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CHAPTER 1
INTRODUCTION

1.1 Abstract

In this thesis’} we develop single stage (fixed sample size) asympto-
tically optimal (minimax) procedures for ranking populations in the presence
of nuisance parameters, when the populations are ranked according to a
parameter of the distribution and the so-called indifference-zone approach
to ranking and selection problems is employed., We adapt methods proposed
by Weiss and Wolfowitz in developing asymptotically optimal (minimax) pro-
cedures for a certain class of 2-decision tests of composite hypotheses
problems in the presence of nuisance parameters to multiple decision ranking
and selection problems in the presence of nuisance parameters.

For the problem of selecting the 'best'" population, asymptotically
optimal procedures are developed for situations in which the joint density
function of the observations satisfies certain mild regularity conditions
(similar to those imposed by Weiss and Wolfowitz). The method of analysis
and basic theory is developed in detail for this case. The basic results
are extended to develop asymptotically optimal procedures for certain
other ranking goals considered in the literature, Some examples are
included to illustrate the applicability of the results to specific
distributions.

For ranking and selection problems with joint density function of
observations not satisfying the regularity conditions, i.e., non-regular
cases, we illustrate the applicability of the basic method by developing

asvmptotically optimal procedures for ranking non-regular exponential and

“A thesis submitted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy in the Field of Operations Research, Cornell
University, June 1970,
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uniform distributions,

The results in this thesis can be thought of as generalizing the
basic method of Weiss and Wolfowitz for 2-decision hypothesis testing ‘
problem to multiple decision ranking and selection problems. As a con-
sequence of our results, we show the asymptotically optimal character of
certain so-called natural selection procedures which already have been
proposed in the literature. We also develop single-stage asymptotically
optimal procedures for certain problems for which heretofore no single-

stage procedures had been proposed,

1,2 Outline of the Thesis

In Section 1.1, we have given an overview of the problem considered
below and of the results obtained. In the present section we outline the
contents of the various chapters.

In Section 1.3 we give a brief introduction to ranking and selection
problems., In Section 1.4, we introduce the basic method proposed by Weiss
end Wolfowitz [55) in developing asymptotically minimax tests of composite
hypothese: In Section 1.5, we point out that by treating Ranking and
Selection problems in the framework of statistical decision theory, the
basic method of Weiss and Wolfowitz can be extended to develop asympto-
tically optimal ranking procedures.

In Chapter 2, we consider the problem of selecting the "best' popula-
tion. The notation used throughout the thesis is defined. Mild regularity
conditions imposed on the density functions are specified. Some preliminary

results of statistical decision theory are included. Tho ranking problem
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is structured as a decision theory problem and an asymptotically optimal pro-
cedure for a particular zero-one loss function is obtained. The rate

of convergence of the decision variables to the asymptoticallv normally
distributed variables is studied. The general results are applied to

certain specific distributions, and asymptotically optimal procedures

noted in each case. Large sample applications of our results are

illustrated by indicating how the procedure would be used in ranking

means of normal population with common unknown variance.

In Chapter 3, we extend our basic method to develop asymptotically
optimal procedures for certain other ranking goals. Asymptotically optimal
procedures are developed for the problem of selecting a fixed-size subset
to contain the best population and for the problem of selecting one of
the t best populations. We discuss certain other general ranking goals
which have been considered in the literature and develop asymptotically
optimal procedures for two additional ones.

In Chapter 4, we note some density functions not satisfying the
regularity conditions, and develop for non-regular exponential and uniform
distributions, asymptotically optimal procedures for selecting the best

population and for certain other ranking goals,

1.3 Ranking and Selection Problems

Bechhofer [4] in his pioneering paper pointed out the inappropriate-
ness of the traditional practice of testing null hypotheses and proposed
for a certain class of problems, termed ranking problems, the basic con-

cepts of his multiple decision ranking approach. These methods for ranking,
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or partially ranking, a group of populations on the basis of an experi-
ment are of great practical importance, especially in connection with
the problem of selecting the best populations from a set of competing
ones,

Since the paper by Bechhofer, a considerable number of papers have
been written on ranking and selection problems. Although there are many
ways in which such problems can be formulated, the two most commom formu-
lations in the litcrature are the "Indifference Zone' approach, as pro-
posed by Bechhofer [4], and the "Su.!-.et" approach, credited to Gupta [20],
In this thesis, we concentrate on the indifference-zone approach to rank-
ing and selection problems. Unless otherwise stated, in all references
to ranking and selection problems in this thesis, it is understood that
we refer to the indifference-zone approach to the problem,

The general nature of investigations in ranking and selection problems
may be summarized as follows:

Let nl,nz....,nk denote k populations (k > 2) being ranked,
with F(';et) denoting the distribution function of nt (t =1,2,...,k).
Here et is a vector of population parameters. The populations are
ranked on the basis of a well defined scalar wt = w(et), t=1,2,...,k.
Each 6t may be completely or partly unknown, but the functional form
v 1is known., (In most problems, ¢ is one of the parameters of the

distribution.) The ordered v, are denoted by wlll'i wlzl € eee & w[k] .

It is assumed that the pairing of the nt (t =1,2,e0.,k) with the

w[j] (G =1,2,...,k) 1is completely unknown, Let n(t) denote the

population associated with *[t]'
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It is assumed that the larger the value of , the better the
associated population; n(k), the population associated with *[k]' is
denoted the ''best' population. In general, "(k-t+l) (t=1,2,...,k)
is denoted the "tth best'" population, (Analogously, in appropriate
situations, we may consider smaller values of ¢ as more desirable and
denote n(l) as the "best'" population.)

Selection Procedures (SP) are set up in such a way as to guarantee
certain requirements on the probability of 'Correct Selection,' where the
definition of correct selection depends on the ranking "Goal' being con-
sidered. Some of the goals considered in the literature are

i) Select the t best populations (1 < t < k)

a) with regard to order
b) without regard to order

ii) Select s of the t best populations (1 <s <t < k).

iii) Select a subset of s populations to contain the t best

populations (1 <t < s < k).
iv) Select a subset of s populations to contai~ at least d of
t best populations,
For a given goal, with associated definition of correct selection,
we are interested in any Selection Procedure (SP) which guarantees the

probability requirement

(1.1) inf P(CS|SP) > Pe
Q(6*)

where o = (91.62,....6k). Q 1is the set of all possible , and n(s*),

called the preference zone, is a certain subspace of the parameter space




N, defined according to the goal being considered and a certain distance
function §(*,*). The function 6(b,a) measures the "distance'" between
two populations with values of parameter of interest ¢ being b and
a respectively, with a < b, It is assumed to be i) non-negative
ii) equal to zero if and only if a = b, and iii) increasing in b for
fixed a and decreasing in a for fixed b.

For example, for Goal i), Gt = G(w[k-t+1]’ w[k-t]) measures the

distance between the set of t best populations (n(k)""’n(k-t+1))

and tae remaining (k-t) worst populations; and 0Q(§*) may be defined

as
(1.2) a*) = {(we Qldt > 6%}

If y, is the location parameter ¢f 1 (t = 1,2,...,k), then one
t P t

may choose Gt = w[k-t+1] - w[k-t] as a natural distance function for the

problem; but for other cases 6(°*,*) may be defined using practical and/or
theoretical considerations.
Here 11(8*, P*)} with 6* >0, A(k) < P* <1 are constants,
specified prior to start of experimentation. A(k) is a lower bound on
the specified probability P*, which depends on the number of populations
(k) and the goal being considered., It is the probability which could be
achieved by selecting at random and not carrying out any experimentation,
Then for a given goal and distance function, and specified constants

(6*,P*), a selection procedure SP(6*,P*) satisfying (1.1) is defined.
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A selection procedure comprises a terminal decision rule and a sampling
rule (and associated stopping rule if sequential sampling is used).

The sampling rule may be single stage (fixed sample size), two or more
stages or fully sequential.

In the field of ranking and selection problems, selection procedures
have been proposed for the particular problem at hand. In view of the
above, a particular ranking problem is characterized by: i) the form
of distribution function F(¢,*), 1i) the scalar ¢(°*) by which
populations are ranked iii) the ranking goal and iv) the distance
function &8(-,°).

Thus, for example, Bechhofer [ 4 ] proposed a single stage procedure
for selecting the best normal population, whe: populations are ranked
according to their means (with known variances), and the difference
between the largest and second largest mean is the distance function,

In [4], Bechhofer also proposed single stage selection procedures for
certain other goals for ranking means of normal populations with known
variances. Tables of sample sizes required to meet the basic probability
requirement (l.1) were provided. These tables would also be useful in
obtaining a large sample approximation to sample size in using single
stage selection procedures for ranking parameters of certain other distri-
butions. It is also useful as an approximation for ranking variances

of normal populations, a problem for which tables of exact sample size

for a single stage selection procedure were provided by Bechhofer and

Sobel {8].




Bechhofer, Dunnett and Sobel [5 ] proposed a two stage procedure
for ranking means of normal populations with a common unknown variance.
In the proposed procedure, the unknown variance is estimated from
observations obtained in the first stage, and an additional random num-
ber of observations are taken at the second stage, the number depending
on the outcome of the first stage are determined so as to guarantee the
basic probability requirement,

Paulson [36]) proposed 2 class of sequential procedures for selecting
the normal population with the largest mean, the populations having a
common variance; when the common variance is known, the sequential pro-
cedure is closed, Paulson [37] also proposed a sequential procedure for
selecting the best binomial population, Hoel and Mazumdar {[26] have
extended Paulson's open sequential procedure to solve the problem of
selecting the best from the class of Koopman-Darmois family of distributions,

Bechhofer, Kiefer and Sobel [ 7] have proposed sequential procedures
(including generalizations of Paulson's (36] procedure) for ranking problems
associated with the Koopman-Darmois family of distributions. Perng [38]
has recently compared the asymptotic expected sample sizes of the two
sequential procedures of Paulson [36] and Bechhofer, Kiefer and Sobel { 7]
for problem of ranking normal means with common known variance. In the
literature, there are no other sequential procedures proposed for the
ranking problems which satisfy the basic probability requirement, Robbins,
Sobel and Starr [41], Srivastava [46] and Srivastava and Oglivie [47]
have proposed sequential procedures, for the problem of ranking means of
populations with common unknown variance, which satisfy the probability

requirement only asymptotically (as 6* + 0),
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Since this discussion is not intended to be an extensive review
of the literature, we refer the reader to the monograph by Bechhofer,
Kiefer and Sobel [ 7] for a comprehensive bibliography on Ranking and
Selection problems (for the indifference zone approach and other
approaches considered in the literature). Also see Ramberg [39] for
some recent work on certain ranking problems associated with multivariate
normal populations.,

In this thesis, we are only concerned with single stage procedures
and the following discussion refers only to such procedures for ranking
and selection problems. In most of the work done in this field, the
selection procedures which have been proposed initially were developed
more or less on an "intuitive'" basis (so-called natural selection proce-
dures) to satisfy the basic probability requirement imposed on the proce-
dures. Bahadur and Goodman [ 1] considered a class of multiple-decision
rules which they called impartial (invariant under permutations of the
populations). Their results are applicable to the problem of selecting
the best population and imply that Bechhofer's ([ 4]) and BSechhofer and
Sobel's ([ 8]) natural selection procedures are minimax rules (in fact,
uniformly minimum risk rules) among the class of impartial decision rules.

Hall [25] removed the restriction of impartiality and proved the
optimality of the natural selection procedures by proving their minimax
character (by introducing a suitable zero-one type loss function). Hall's
results are applicable not only for the problem of selecting the best
population, but also for the problem of ranking a specified number of

populations, with or without regard to order. Hall's results apply to
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problems wherein the ranking parameter is a location or scale parameter
and for which there is a sufficient statisvic (for each sample size) with
a monotone likelihood ratio. In situations where the ranking parameter
is not a location or scale parameter, Hall showed the "most economical
character of natural selection procedures for a specified location of the

ranking parameter. Since for many problems, a least favorable location

(of the ranking parameter) can be determined, Hall concluded that the
optimal character of the natural selection procedure can be shown to
hold irrespective of the location of the ranking parameter. Thus, Hall's
result applies to the problem of selecting the best population when-
ever there is a sufficient statistic with a monotone likelihood ratio,
and therefore, in particular, if its distribution is in the exponential
family.

Lehmann [31] extended the results of Bahadur and Goodman [ 1)
to show the optimality of natural selection procedures, among the class
of impartial decision rules, for problems of ranking (with cr without
regard to order) populations, when the ranking parameter has a sufficient
statistic with a wonotone likelihood ratio. Lehmann [31] also showed
certain other optimum properties of the natural selection procedures and
provided an alternate proof to results of Hall [25]). Eaton [17] has shown
the optimality of natural selection procedures, among the class of impartial
decision rules, when the ranking parameter has a sufficient statistic
which has a cestain monotonicity property (defined in [17] and similar
to the rankability condition in [ 7)). Eaton's results thus extend the
optimality of selection procedures to a larger class of density functions.

Fabian [19] has shown certain other optimum properties of natural selection

. g - r - . T Ui ol e
p
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procedures for ranking problems.

As a consequence of the results in [ 1], [25), [31]) and [17], we
note that the natural selection procedures proposed for the following
problems are indeed optimal among the class of all single-stage procedures.

(The references noted in brackets indicate the papers in which the proce-

dures were proposed).

(i) Ranking means of univariate normal population with common known
variance (Bechhofer [ 4]).

(ii) Ranking variances of univariate normal populations (Bechhofer
and Sobel [8]).

(1ii) Selecting the best of several binomial populations (Sobel
and Huyett [44)).

(iv) Selecting the multinomial event which has the highest proba-
bility (Bechhofer, Elmaghraby and Morse [ 6]).

(v) Selecting the bivariate normal population with largest correla-
tion coofficient (Ramberg [39]; also given as an example in
taton [17]) .

(vi) Sele-ting the component with the largest mezn in ranking from
a sin.le multivariate normal population with common known

varia .2 and covariance of the components, (Given as an example
in Eaton [17) and Milton {[34]).

In most of the work done in ranking problems, populations are ranked
according to values of a certain parameter in the distribution of the
populations, Other wknown parameters in the distribution, if any, would
constitute ''nuisance’ parameters for the ranking problem. In the work
cited above on optimality of single stage ranking procedures, not much
explicit consideration is given to the nuisance parameters. For example,
in (17], it is assumed that a sufficient statistic exists for any unknown

nuisance parameters, and the nuisance parameters are such that the basic
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probability requirement is guaranteed for all possible values of unknown
nuisance parameters by a finite sample size single stage procedure. For
problems, where due to unknown nuisance parameters, no finite sample

size single-stage procedure satisfying the basic probability requirement
exists, one may like to develop single-stage procedures which satisfy the
probability requirement asymptotically (as 4* - 0). No previous work
seems to have been done for such problems. The procedures developed in
this thesis are applicable for such problems. These procedures which
satisfy the probability requirement asymptotically, are also asymptotically
optimal among the class of all decision rules.

In most of the work on ranking problems, large sample approximations
to the single-stage sample size (needed to guarantee the probability require-
ment) are suggested, It would be interesting to study the asymptotic
properties of the large sample approximations to the natural selection
procedures. Asymptotically optimal procedures developed in this thesis
answer this question and we show the asymptotically optimal character of
certain natural selection procedures which already have been proposed in
the literature.

Finally, in the field of ranking and selection problems, there are
certain problems for which no single stage procedures have been proposed
(for example ranking scale parameters of Weibull distributions with known
location parameter and common (known or unknown) shape parameter).
Asymptotically optimal procedures developed in this thesis are applicable
to such problems too, thus indicating the wide applicability of our

results.
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1.4 Asymptotically minimax tests of composite hypotheses

For testing a simple hypothesis versus a simple alternative, the
Neyman-Pearson Lemma provides an optimal test. That is among the class
of all fixed sample size tests with level of significance < a (0 <a <),
the optimal test maximizes the power. For a certain class of composite
hypotheses testing problems, Neyman [35] obtained asymptotically optimal
tests in a certain class of asymptotically similar tests, Lecan (29]
extended Neyman's results to obtain asymptotically optimal tests among
a larger class of asymptotically similar tests. Bartoo and Puri (3]
and Buhler and Puri [11) have extended Neyman's result to slightly more
general setups,

Very recently, Weiss and Wolfowitz [55] have obtained asymptotically
minimax (optimal) procedures for a certain class of composite hypotheses
testing problems. Using the basic method developed by the authors
([S2) and [S3]) in the general theory of asymptotically efficient esti-
mators, Weiss and Wolfowitz obtained asymptotically optimal tests of
hypotheses in the presence of nuisance parameters. There are no arbitrary
restrictions on the class of tests among which optimal tests are being
developed; hence the tests are asymptotically optimal tests among the
class of all tests. The general theory is developed in [S55] for the
class of density functions satisfying some mild regularity conditions;
but the basic idea can be used for the non-regular cases as well, each
such non-regular case requiring special analysis.

The basic method of analysis and the problem considered by Weiss

and Wolfowitz may be summarized as follows:
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Let xl,xz,....xn be independent, identically distributed random

variables with the common density function f£(*;6). The density function

is characterized by the vector parameter 6 = (61,62,...,6 'ep¢l)' p> 1l

P

(01’92""’9p) are the unknown nuisance parameters, and eP’l is the

parameter being tested, Let Ho be the (null) hypothesis that ep+l 2 eP’l
: : - c

and H1 be the (alternative) hypothesis that epol = ep*l + 75 , where

55’1 is a given constant and ¢ is a given positive constant.

Weiss and Wolfowitz [55]) consider the problem of testing the null
hypothesis HO versus the alternative hypothesis Hl‘ They obtain an
asymptotically optimal test, That is, among the class of all tests (of
H0 versus Hl) which (is the limit as n -+ ») have level of significance
less than or equal to a (0 < a < 1), the optimal test maximizes (in
the limit as n + =), the power function.

In order to develop an asymptotically optimal test, Weiss and
Wolfowitz first solve the following sequence of artificial problems
{(one for each n):

H. and H

0 1
does not know (el,....ep) but does know that

are the two hypotheses as given above. The statistician

1.3) | E il 2 d

. e. - 6 < i x l, ,-...p ﬂn
i i - /o

8. * ) .l or F’l o £

P P p /n

and wishes to test Ho versus Hl' Here Mn(g) is a positive function

+ 0. The above problem is an

of n such that Mn(E) + @
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artificial problem since it is assumed that the statistician knows

6’,5 ’.tl’.e— .

An asymptotically optimal (minimax) procedure is developed by
constructing a Bayes deci:ion rule for the problem of testing hypothesis
Ho versus Hl (when the loss function is zero-one: the loss if zero

or one according as the correct or incorrect decision is made) relative

to the following apriori distribution: a total mass of b is spread

_ M® _ MG
uniformly over the set 6. - < ei < 8. ¢ i=1,2,...,p
1 /;" = 1 '/'T
and ep’l = ep*l and a total lass of (l-b) is spread uniformly over
M, (8) _oM®
the set ?& - < 8 < § ¢ i=1,2,...,p and
/n vy
c
6 = ¢ —_
pel el &

Weiss and Wolfowitz [SS] obtained a Bayes decision rule for the
above problem and studied the asymptotic properties of the decision rule
for a class of density function satisfying certain mild regularity condi-
tions (stated in [SS5] and very similar to the regularity conditions
imposed for our problem in Section 2.1). Since they are interested in
asymptotic behavior of the decision rule, the apriori mass b (0 < b < 1)
is adjusted in such a way that the level of significance for the artificial
hypothesis testing problem is equal to a specified level a (0 < a < 1),
Then, the Bayes decision rule for this specially selected prior is,
by the very nature of being a Bayes decision rule, an asymptotically
optimal procedure for the sequence of artificial problems. It is shown

in [55] that the asymptotically minimax (optimal) procedure is a function
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of (5},92,...,5§), which was assumed to be known for the sequence of
artificial problems.

To obtain an asymptotically minimax procedure for the real problem,
Weivs and Wolfowitz (55] propose using the asymptotically minimax procedure
for the artificial problem, with (5},5},...,§i) in the decision variable
replaced by estimators (él(n),§ (n),...,gp(n)) of the unknown nuisance
parameter. These estimators of (el,ez,...,ep), based on xl,xz,...,xn

satisfy the following consistency condition; for any € > 0, there exists

D(e) < = such that

(1.4) P o (/RIS () - 0) < D) i=1,2,u..,p) >1-c

91062D°°°l P
H or H, is true

0 1

Because of the above consistency condition, the proposed decision
rule has the same asymptotic properties as the asymptotically optimal
rule for the artificial problem, and is hence asymptotically optimal for
the real problem,

The basic method (outlined above without going into any mathematical
analysis) proposed by Weiss and Wolfowitz is very powerful, yet very simple,
and is adopted in this thesis to develop asymptotically optimal ranking

procedures,
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1.5 Ranking problems in the framework of statistical decision theory and

some additional remarks:

In the field of ranking and selection problems, Sommerville [45]
was the first author explicitly to consider the ranking problem in the
framework of statistical decision theory. By introducing a loss structure
into the ranking problem, Sommerville obtained a minimax decision rule
which balanced the cost of experimentation against the expected loss
associated with a wrong decision. However, Sommerville considered only
prespecified selection procedures, whereas we are concerned with develop-
ing selection procedures which are in some sense optimal in the class of
all decision rules, Bechhofer, Kiefer and Snbel (p. 46 of [7]) also
point out how the ranking problem could be reduced to a decision theory
problem by introlucing a suitable loss function,

In tiic work cited in Section 1.3 on showing the optimality of
natural sclcction precoclures, the ranking problem is treated in the
framevork of staticti.:i decision theory. The optimality of natural
seloction rvoced.r:s is proved by treatire the problem as a rvitiple-
decision nrovlem snd shoving the minimax character of the prccedure,
by introducing a suit2lle loss function into the problem, In this
thesis too, we t.-oct the rank‘ng problem in the {ramevork of Wald's [48])
statistical decision theory as a multiple decision piosiem, wherein the
numter of decisions depend on the number of populations being ranked
and on the ranking goal being considered. A zero-one type loss function,
suitable for the ranking goal being considered, is introduced and adopt-
ing the basic method proposed by Weiss and Wolfowitz [55]) for 2-decision

problems in the presence of unknown nuisance parameters, we proceed to




-18-

develop an asymptotically minimax procedure for the multiple-decision
ranking problem in the presence of unknown nuisance parameters. As

in [55], we first develop an asymptotically minimax procedure for a
sequence of artificial problems, which in turn gives an asymptotically
minimax procedure for the ranking problem.

In our analysis, we make no assumption about the form of the distri-
butions (except that they satisfy certain mild regularity conditions,
given later on in Section 2.1) or the existence of any sufficient statistic
(for each sample size) for the ranking parameter, The problem is solved
for an arbitrary, but fixed, location of the ranking parameter. If the
ranking parameter is a location or scale parameter admitting a sufficient
statistic, then the results hold irrespective of the specified location
of the parameter and hence the procedure developed is an asymptotically
optimal ranking procedure. In other situations one may be able to find
"least favorable location" of the ranking parameter and thus the solution
to the ranking problem at such a location gives an asymptotically optimal
procedure. If in the worst case, one cannot find such a least favorable
location, the procedure developed by our method gives an asymptotically
optimal identification procedure, for any arbitrary, but fixed, location
of ranking parameter,

Since the problem of selecting the best population seems to be of
most practical interest, and also because the main ideas in the theoretical
development of asymptotically optimal (minimax) ranking procedures are
illustrated in this case, we treat in detail, the development of an
asymptotically .ptimal procedure for the problem of selecting the best
population. For certain additional ranking goals, we develop asymptotically
optimal procedures by reducing the analysis to one very similar to the

problem of selecting the best population.
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CHAPTER 2

ASYMPTOTICALLY OPTIMAL PROCEDUKE FOR SELECTING THE BEST POPULATION

2.1 Notation, Assumptions and Regularity Conditions

Let xti(i =1,2,...,n) denote observations from population

IIt (t=1,2,...,k), and write xi = (xli,xzi,...,xki). In this thesis,
we assume that Xl,xz,...,Xn are independent and identically distributed
random vectors.

Let el,ez,...,ep denote unknown nuisance parameters, common to
each of the k populations, Voo (t =1,2,...,k) denotes a scalar
valued parameter of population Mye The populations are ranked according
to the values of the parameter ¢ (the large. che value of ¢, the better

the population is considered to be). For convenience in notation, let

(2.1) wt = 00 - 6p+t t = I’Z’OIO’k

Thus, 60 may be regarded as the common value of the ranking
parameters  and ep*l (t=1,2,...,k) may be viewed as shifts of
the parameter from the common value 6o°

The density function of the random vector X 1is represented by
f(x; 90'61’62""’9p’9p+1'""°p+k)' Denoting (90’91""’ep+k) by
9, the density function will be commonly represented as f(x;6).

The basic theory is developed for a class of density functions

satisfying certain mild regularity conditions, which we state in the form

of the following assumptions:

-19-
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3

SO f(x;8) exists and is continuous for all x
30039838Y

Assumption 1:

all ¢ and all a, B, v (o,8,y =1,2,...,p+k).

Assumption 2: The (p+k)x(p+k) matrix whose (i,j)th element is

9 9
56{56; log f(X;0) 53;-log f(X;e)} (153 = 1,25 8a,pFk)

is assumed to exist and is positive definite for all 6.

Fix a positive quantity L which will r2main fixed throughout the

analysis. For any positive quantity M, and any 6 = (56,5&,...,§£+k),

let R;(E) denote the following region in 6-space.

i=1,2,...,p
(2.2)

[
)

= p+1,p*+2,...,p*k

Sl =

Assumption 3: For any 6, there exists a sequence of positive

values {Mn(E)} with

n
8

lim Mn ®)

nN->co

(2.3) M @
lim

_n172

H
o

and such that, if {w(n)} and {u(n)} are any two sequences in 8-space

with w(n) ¢ Ra (3)(3) and u(n) ¢ R; (53(5) for each n, then
n n
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Mr:: ©)) rzl 33
[57—=g—=7— log f(X,;6)]
n372 ity aeuaeeaeY i u(n)

converges stochastically to zero as n increases, when w(n) 1is the

true parameter point for X, Also this convergence is uniform in

u(n) an) w(n) over R;: @) ®).
n

Assumption 4:

®

) . 9 log f(x;6)
B 38 98 [ (*:6) §§° o
L u(n) 8

is uniformly bounded for all u(n) ¢ 'S?I ®) () for all a, B, Y
(alBlY = l’Z,QQ.'p’k). n

For a,8 =1,2,...,p*k, let

1 n 32
(2.4) B (a,8;8) = == ] = log f(X;;0)
i=] a B )
and
_ ) |
(2.5) 8(018;6) = -E- W lOg f(X;e) \
8 a 8 3(

/

Assumption S: If w(n) is the true parameter point for X,

w(n) e R;; @) (), then Bn(a.s;g) converges stochastically to B(f,a;0)
n

and B(a,B; 6) is a continuous function of ©, for all a,8 (a,8 = 1,2,..,p*k,
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In our analysis, we consider only those procedures which take
equal size samples from each population, We do not assume the existence
of a sufficicnt statistic for the ranking parameter or the nuisance
parameters; and the decision rule is given in terms of the density
function f£(x;8).

Apart from the regularity conditions stated above, we make no other
assumptions about the form of the density functions. Thus, the results
obtained in this chapter (and also in Chapter 3) are applicable to the
problem of ranking several univariate populations according to the
values of a certain parameter, each population having common unknown
nuisance parameters. The results also apply to problems of ranking
several multivariate populations, the populations being ranked according
to values of a scalar valued parameter and each population having common
unknown nuisance parameters, The results are also applicable to certain
ranking problems associated with a single multivariate population. The
results are applicable in situations where, apart from the regularity
conditions stated above, certain symmetry conditions (on the density
function f(x;8)) hold. These symmetry conditions are needed in showing
that a symmetric prior distribution gives a minimax decision rule. Thus,
our results apply to the problem of ranking from a multinomial distribu-
tion as well as ranking means or variances of a single multivariate normal

populaticn with common (known or unknown) correlation coefficient,

2.2 Some Preliminary Results of Statistical Decision Theory

In order to put the ranking problems considered in this thesis into

the decision theoretic framework, and present a general theoretical
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development of an optimal procedure for different types ot ranking
problems, we cefine some notation and present some preliminary decision
theoretic results which will be used later on, The notation is similar
to that used by Weiss [49],

Let xl....,xn be the observable random variables, on the values
of which the decision is to be based. Let x be an index for the possible
sets of values of (xl,xz,....xn). Let f(x;6) denote the joint pdf
of (Xl,...,xn), where 6 is an index for the possible joint distribu-
tions,

Let D be an index for the possible decisions; that is, a particular
value of D indicates a particular decision. In the case where there
1s only a finite number of decisions, say h, we can list the decisions
in a particular order and let Di (i=1,2,...,h) indicate the ith
decision. Since for ranking problems, the number of decisions is finite
(this total number depending upon the numver of populations and the specific
goal being considered), this notation will be used.

In the decision theory formulation, different ranking problems would
be analyzed in the same way, differing only in the total number of possible
decisions h, and interpretation of each decision (depending on the rank-
ing goal). For example, for selecting the best population, the total
number of possible decisions h 1is equal to the number of populations
k; and l)i may refer to selecting ni as the best population. For
the problem of selecting a fixed size subset of size s (s < k) to con-
tain the best population, the total number of possible decisions h s
(k) and each Di may refer to selecting a pavticular subset of si1ze s

S

as the best subset,
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Let W(8,D,x) denote the loss incurred when x 1is the observed
value of (xl,...,xn), D 1is the decision made and 6 is the true
parameter value, For a large class of problems, W( ) may be indepen-

dent of X,

Definition: A decision rule s is defined by nonnegative numbers
s(D;x), where s(D;x) is the probability assigned by decision rule s

to choosing a decision D when X is observed.

When the total number of possible decisions is finite, say h, then

we have for each x,

h
(2.6) I s@ix) = 1
i=]
Definition: The expected loss, incurred when using decision rule s,

and the true joint probability distribution is given by 6, is denoted

by r(e;s), and often called the risk function,

For a problem with a finite number h of possible decisions and

joint pdf f(x;8) (for random variables (xl’XZ""’xn))

" = h

(2.7) r(8;s) = -i ...-i izlwe;ni;x) f(x;8) s(Di;x) Xy a0, dx
Let

(2.8) M(s) = max r(6;s)

8

e e a0 PR P = o S




Definition: The expected risk for a decision rule s, with respect to

a cdf B(6) for chance variable 8, is denoted R(s; B(6)) and given

by
(2.9) R(s;B(8)) = E ({r(6;s)}
B(8)
Definition: A dJdecision rule s is a '"Bayes decision rule relative to

B(8)" 1if for every decision rule t,

(2.10) R(s;B(8)) < R(t;B(6))
Definition: A decision rule s is called a minimax decision rule, if

for every decision rule t,

M(s) < M(t)

B(6), used for constructing a Bayes decision rule is often called
an "apriori distribution,'" We would like to point out that 6 1is an
unknown vector and not a chance variable. The introduction of the cdf
B(6) 1is just a technical device to enable one to define a Bayes decision
rule for the case of an infinite number of possible distributions (indexed
by 8).

From a Bayesian viewpoint, one may specify some particular cdf
B*(6) and construct a Bayes decision rule relative to the specific
apriori distribution., In this thesis, however, we are only interested

in minimax decision rules, and Bayes decision rules are only used as a
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technical device to construct such minimax decision rules,

If B(8) has a pdf b(8), then

(2.11) R(s;B(8)) = [ r(e;s)b(e)de
6

For a problem with a finite number h of possible decisions, and

B(6) having a pdf b(6), we obtain using (2.7) and (2.11)

L ® h
R(s;B(8)) = [ { [eeeef ] s(D.;x) W(8;D,;x) £(x;8)dx,...dx }b(6)do
8 -= -=is] 1 . "
(2.12)
® ® h
= -i...:i [izl s(D;5x) k(D ;x)]dx)...dx
where
(2,13) k(D;;x) = [ W(e;D,;x) £(x;8)b(6)de
e

Using the above representation, we easily see that 's 1is a Bayes
decision rule relative to B(8), if for each x, s(D;x) 1s set equal to

tero for every Di for which k(Di;x) is greater than min (k(Di,x)}."
l<i<h

We end this section by stating, without proof, two well-known
theorems which enable one to recognize a decision rule as a minimax

decision rule.

Theorem 2.1. If s is a Bayes decision rule relative to B(8), and
if r(®;s) = M(s) for every 8 which is a point of increase of B(%),

then s is a minimax decision rule,
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If the number of possible distribution functions is finite, and if
we let b(el),...,b(em) denote the apriori distribution for the possible
values (el,...,em) of 6, then we obtain the following special form

of Theorem 2.1

Theorem 2.2, If s 1is a Bayes decision rule relative to b(el),b(ez),...,
b(em) and if r(8;s) = m(s) for every 6 for which b(e) is positive,

then s 1is a minimax decision rule,

2.3 Selecting the best population

In this chapter, we derive, in detail, the basic results needed to
develop an asymptotically optimal procedure for the problem of selecting
the best population, when the density function of observations satisfies
the regularity conditions given in Section 2,1, Since we are dealing
with the indifference zone approach to the ranking problem, we need to
define the preference zone for the problem at hand, As we are interested
in developing a procedure (really a sequence of procedures) which is
asymptotically optimal, we defi..> the following sequence of preference

zones (one for each n).

(2.14) BETEY = e By S Ve -/é}
n

where ¢ > 0, ¢ 1is the parameter being ranked, and wll] < wlz] S vee < w[k]

denote the ordered parameters.
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Also, for any sequence of procedures ({T(n)}, let

(2.15) P(T) = 1lim inf P{CS|T(n)}
e Q(6*(n))

Then, throughout this thesis, an asymptotically optimal selection procedure

is defined as a procedure T (really a sequence of procedures (one for

each n)) such that among the class of all procedures T',

(2.16) P(T) > P(T')

In order to develop an asymptotically optimal procedure (that is
a procedure for which (2.16) holds), we formulate the problem as a
decision theory problem with a particular zero-one type loss function,
and obtain an asymptotically minimax decision rule for the associated
multiple decision problem. This is done in detail in the next section.

We would like to point out here that in developing selection pro-
cedures (for ranking problems) which are asymptotically optimal, the
problem of defining a suitable preference zone is solved in a nice way,
We are interested in defining a sequence of preference zones in such a
way that the distance between the best and the second best population
approaches zero as n + =, That we require such a sequence for the
asymptotic theory is clear by the fact that if, for example, the distance
between best and secend best population were some constant, then for any
procedure using a consistent estimator of the ranking parameter, P(T)
(as given by (2.15)) would be equal to one (that is, one is able to

select the best population with probability approaching one as n + =),

p gp g s ta e - ee o Soemmomn st - ot pT ecimm gme pemesgeervw o o
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Thus, the preference zone as defined in (2.15) is appropriate for the
ranking problem. The distance function used in defining the preference
zone is a '"natural' distance function for the problem of ranking popula-
tions according to values of the location parameters. For asymptotic
theory, this is an appropriate distance function for ranking any para-
meters of a distribution, a result not too surprising in view of the
fact (as we shall see in the next section) that the problem (at least
asymptotically) reduces to one of ranking means of normal populations
for which the distance function used is a natural distance function.

For asymptotic theory, in the sequence of preference zones (as defined
by (2.14)) the rate of convergence of the distance function to zero
(consequently the rate of convergence of preference zones to the whole
parameter space) is 1/v/n. This is directly related to the normalizing
constant (/n for the class of problems being considered), for which
the decision variables have a limiting distribution. If the rate of
convergence is too slow, the problem reduces to a degenerate case
while if the rate of convergence is too fast, the decision rules will
not be able to distinguish the best population among the set of competing
ones,

For 1i=1,2,...,k let

9.=—.+C/IT '=1,2.ook

p*J pej * ¢/ e R0
(2.17) Hi:

ep+i = ep+i - c//ﬁ
where ¢ > 0 and 6b+j = Eb+i all i,j (i,j = 1,2,...,k) are known values,
8 .. may be taken to be zero, with no loss in generality.

P+]
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In view of (2.1), (2.17) represents a restricted parameter configura-
tion, in which if Hi is the true state of nature, then ﬂi is the best
populiation,

We now discribe the basic method used in developing asymptotically
optimal ranking procedures. In order to develop an asymptotically
optimal procedure for the ranking problem, we develop an asymptotically
optimal procedure for an associated identification problem, with —b,
the common location of the ranking parameter, as the least favorable
location of the ranking parameter, We first solve the problem for a
restricted parameter configuration, given by (2.17), and then show that
the procedure developed is minimax overall parameter configurations.

As in [55], we first solve a sequence of artificial problems, the solu-

tion to which suggests an optimal procedure for the real ranking problem,

2.4 Asymptotically Optimal Procedure for Zero-one Type Loss Functions

For the problem of selecting the best population, let Di denote
selecting Hi (as given by (2.17)) as the true hypothesis (equivalently
selecting ni as the best population), The loss function is given, for

i=1,2,...,k5 by

0 if H, is the true hypothesis

(2.18) W(6,D.;x) = W(§;D.) =
1 1 0
1 otherwise

2.4.1 Preliminary Sequence of Artificial Problems

For the loss function (2.18), and with the joint density functions

of the populations satisfying the regularity conditions (of Section 2.1},

P TR T AN SR aRe T % e st tee % wemaome sty veest  ieme. S e amiyem Sy g bcayteewessh . ..
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we would like to develop an asymptotically optimal procedure for the
problem of selecting the best population, Before proceeding to the real
problem, we first solve a sequence of artificial k-decision problems

(one for each n),

Suppose it is known that for i = 1,2,...,p, we have

g -
i & i

of the k hypotheses given by (2,17), (51,...,55) are known constants

M () _ M(®)
S PO ei + = and (ep”,ep+
n

2""’ep+k) satisfy one

and 0 < c < L. We wish to test which one of the k hypotheses Hl’HZ""’Hk
is the true one,

For the above problem, which is an artificial one because we assume

-—

61,...,§£ are known, we construct a Bayes Decision Rule relative to
the following apriori distribution: For j = 1,2,...,k a total mass

of bj is spread uniformly over the set

M (8
L < 8, < 9. +

1 /!—{ 1

—

=
~
~—

i=12,...,p and Hj is true

where bj >0 for j=1,2,...,k, and

The prior distribution (bj’ i =1,2,...,k) 1is arbitrary, but
fixed. Later we select the prior in such a way as to obtain a minimax

decision rule for the problem at hand.




If we let Di denote the decision to select Hi as the true

hypothesis and compute k(Ui;x) for each i, then it can be seen that

a Bayes decision rule relative to the above apriori distribution is given

as follows:

Sclect H as the true hypothesis if

b,
(2.19) J @l 2 gl 2,j = 1,2,...,k
2

where for j,i = 1,2,...,k

M_(8) M_(8)
[P L
V' 4 P &
n
izlf(xi;e’ui)del""’dep
TM@E L M (E)
ul- /_ Sp- /_
(2.20)  J (c]y) = . —
M (®) M_(8)
e 7 el
' & P A
n
EEET S T n f(X.;9,H.)do,,...,d®
IR s U P
‘ _Mnm . -Mn(e)
V' & P /A

Here f(xi;o,iu) denotes the joint pdf of the observations when 6 is

the parameter valuc and ( are as given by hypothesis

”p.lo-‘-oep’k)

For notational convenience, we let

‘ﬂ f(xi;”'nl)dol""'dep

1 n
OOOQJ ln f(xi;",H).)d”l.no"dep

H..
J
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where the integration is over the region as given by (2.20). Throughout

the thesis, unless otherwise specified, f‘f indicates integration
over a region as given by the last expression for the integral where
the limits are specified,

We investigate the asymptotic properties of J (2]j). We ncw

define certain notation used frequently later on. Let & denote

0 1,...,§p,5p*1,.-'6p+k)‘ Also for a =1,2,...,p*tk, let

(2.21) An(a;é')

S

log f(xi;e)

e~
|
@

: §

Denote by Fn(u,B;E), a,8 =1,2,...,p, the (e:,ﬁ)th element of
the inverse of the (pxp) matrix whose (01,8)th element is Bn(a,8;§),
where Bn(a,s;g) is as given by (2.4). This inverse exists with proba-
bility approaching one as n increases,

For o,8 =1,2,...,p, let F(a,B;6) denote the (cx,B)th element
of the inverse of the (pxp) matrix whose (c:n,B)th element is B(a,B;8).
By our assumptions, this inverse exists, Also by our assumptions, if
the true parameter point for X is w(n) € Rﬁn(g) (6), then Fn(a,8;5')
converges stochastically to F(a,B;6) as n increases.

Using the above notation, we get by expanding arcund 6, for |

R =12, 5o 5K

’

n = _ p.’k ) i
L log £(X;;0,H) = ] log £(X;;8) + ] 4n(s,-F A (e;B)
i=1 izl s
(2.22) ok pek ] ] )
- 5 qgl BZI /0,5, )/n (0,8, (o, 858) + Q(0),0.0,6 1)
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where,
k p+k pek
) BEEP P - - -
e ®sey = Vel e -9 9 - 9 -9 *
Q(8)senen8p) = g OZI BZI YZI (6,-3,) (65-8) (8 -8)
(2.23)

3
36 3030 108 £(X;i%)
a B vy

"ne-19

1=1 u(n)
and in (2.22) and (2.23), we have set
8 . -8 . = = j AL
P*) P*J /n ) 3 1,2,.0.,k
r} ¥ =
ep+l - ep¢l B -/E

and u(n) ¢ R; (3)(5) .
n

We now prove a lemma which will be useful in studying asymptotic

properties of J_(2]j).

Lemna 2.1 For & =1,2,...,k, Qn(el,...,ep|i) cenverges stochastically

to zero as n -+ « for all u(n) ¢ Ra (6)(6) x
n

Proot: From (2.23), we see that
.
| 1 Mn(e) pﬁk pik ptk [ n a3
Q (e ’000)9 R') i a0 Ao An log f(x;ﬁ)
nl P Okl ge) vl |1kl Va0 !

u(n)

+ 0 as n »+ ~ by our assumption,
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Thus Qn(el,...,eplz) converges stochastically to zero as n » = for

all u(n) ¢ Y — (8).
R“n(e) Q.E.D.

Using (2.22), we obtain, for & = 1,2,...,k,

n
lf(xi;e,Hi) exp{izl log £(x;6,H.)}

n =99

i
p*k

n +
exp{igl log f(xi;O) + GZI /E(eu-ea)An(a;e)

(2.24)

Hy

-

a,B

[N ko

-7 L1 /me - )A,F ) B (a,8:8) RN
L

1

Substituting from (2.24) in (2.20), we obtain, for j,t = 1,2,...,k,
J e}y =

n _ p+k _ _
o] expt ) log £(X;8) + ) /E(e“-eJ)An(a;e)l
1

1=1 a=zl
llﬂ
1 g’k - - .
- 3 X Bgl/ﬁ(ea-ea)/ﬁ(ee-eb)Bn(a,u;e)l + Qn(bl,..,Gplﬁ)}dﬁl,..,dbp
-— HQ —
n _ pok _ _
...| exp{ ) log £(x:8) + ) /E(eo-eu)An(a;e)|
i=1 a=l "
)
] f’k E _
23 321/3(60-65)/5(68-68)Bn(a.s;e)j N CHRPRT R FRTETAe T

“j

where HQ(Hj) inside the bracket is used to indicat that hypothesis

HR(Hj) 1s true,
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Simplifying the above expression, we obtain, for £, = 1,2,...,k,

(2.25)
I i) =

r 1 p+k  p+k _ _ y
exp =2cA_(p+2;8) - 5 Z { /‘(e -8 )/‘(eB-eB)Bn(o,e;e)l

| n azpe]l Bzpel H!
_— °

5 - ptk  pek - _ _
exp [;ZcAn(p+j;e) - %. ) ) /E(eu-ea)lﬁ(ee-es)Bn(a,e;e)IH

a=p+l Bap+l =
eesl exp E /ne -8 )A (a;8) - f E (e -6') n(e -Eé)aq(a,s;ﬁ)
TS 7 451 g1
de. ...ds
pek i
-c § /n(e -8 )( Z B, (3,v;)=B (a,p+2;8)]+Q (8,,..,0,|2)
azl y=p+l
- #Pol -
. — 3
[--- exp § /_(e -8 )A (a;8) - % E E (e -8 )/_(e -8 )B (a,8;8)
a=1 a=]l g=]
de,...dé
1 P
-c f-"(e -8,)1 2 B (,7:8) =B, (a,p*3;8)14Q, (8,250, |5)
a=] y=p+l .
o)

If we denote by J;(1|j), the above expression for Jn(2|j) with
Qn(el.....epll) and Qn(el,...,eplj) being removed from numerator and

denominator respectively, then we obtain the following useful lemma.

Lemma 2.2. For 2,j =1,2,...,k

Jn(ﬂlj) stochastically
Jn(lTj) + 1 as n -+ oo,




for all true parameter points (n) e R; (3)(53 .
-

Pronf: Using the law of thc mean for integrils, w2 can write

q(x)
A

Ji|3) = = —— J (2}))
)

e

where 6;(i) (: = j,2) 1is betw.an the minimum and maximum values

taken by Qn(el,...,ep;i) in the region of intcecration, Using Lemma 2.1,

it foilows immediately that if u/n) 1is the tiue pararmeter point for X

SR

and u(n) ¢ RS (;)(6), then j}' 5] conveies stoachastically to one
- n\'nJ

as n -+ =,

Q'E-D-
As a direct conscquence of luina 2.2, to study the asymptotic
prcperties of Jn(nlj), we reed cniy study the asymptotic properties of

Ja(ilj). If we let WoE n{ua-ea), a=12,...,p, we get for




—

(2.26)

Nl s

exp -2cAn(p*i;§) -

[

+
\ & ) 3 €
5 § ! v.,(ea-e))/E(eﬁ-eB)Bn(a.B.C)‘H
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1
1

a,. ¢+l L

—
—

exp | -2cA_(p+j;®) -
-

.\1n(§) M (®)

=
% SZ fn'(ea-Eo)/E(eﬁ-ﬁﬁ)sn(a,e;ﬁ)IH

a,p=p+l j

prk
seecer] exp § w A (0;8) - c[ ] B (a,;8) - B (a,p+2;8)]]
ac] @ n yopsl n n
-M (8) -M_(8) 1 #pet dw)...dv
=7 azzgl waHBBn(a'B;e)
= — —S-
M (B) M () |
prk _ _
[ exp E w (A (a;8) -¢[ ] B (0,y;8) - B (a,p+j;8)]]
) axl a n Y'P’l n n
M @) M () 1 #p* ] dv). .. dv

Since Mn(5) + > as n+ =, it would be tempting to set in the limits of

integration Mn(G) = » and conclude that the resulting value of the expres-

sion (2.26) would have the same asymptotic behavior as JA(QIj). However,

since the integrand is also a function of n, through Bn(a.e;g), a care-

ful analysis is required.

Before proceeding to that, denote by JH(llj) the value of J&(i,‘)

if in the limits of integration in tho expression for J;(ilj) ((2.26)),
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Mn(E) are replaced by =, By treating w (a = 1,2,...,p) formally
as having a multivariate normal distribution with mean vector 0 and

covariance matrix given by ((Fn(a,e;e)’), we gev for 2,j =1,2,...,k,

(2.27)

VNI DI

s -

+k
exp | -2cA_(p+1;8) - % ) g_g’l/ﬁtea-E;)/E(es-ﬁé)an(o,s;ﬁ)|H
F 3 21

— .
=

- k
c.n l * /— —-— =
exp 2cAn(p¢J,6) -3 . §=g¢1/n(e°-e°) n(ee-es)Bn(a,B,e)|H

. -~
IR _ pek - _ -
5 11 (A (a;8) - c( ] B (a,i8) - B (a,p*2;6))} F (a,8;0)
a,B=1 y=p+l
exp fp;l
P .
c( I B (e,v;E) - B (8,p+1;8)))
Y=p*l

S S #pet S =
-

_ prk _ _ -

LI A (a8) -c( ] B (a,7;8) - B (a,p+j;8))IF (a,8;8):
a,h=1 y=p+l n n n
exp #p+)

prk _ -
&l } B (8,v;%) - B (8,p*);8))

y*p+l a

#p+)

'(An(B;G)

LS TR

-(An(a;F)

After some simplification, we get




(2,28)

J;;(zljl

—

=40~

- B - —
exp | 2cA_(p+j;®) - ZcAn(p+2;e) +2c ) Z An(a;G)Fn(a.B;Q)

a,B=1

B, (8,p+4;5) - Bn(s.w;‘e')’

exple?V_(&;2]5)]

where.

+k
! czvn(€;z|j) = % f i /E(ea-Eg)/F(ee-ﬁé)sn(a,s;ﬁ)

a,B=pe] H

+k
1 - = ;
- 5;,3§p§1/n(e°-e°)/n(ee-es)B"(a'e'e) .

2
P
psk _ _ . btk - -
{ I B (a,v;8)-28 (a,p*j;8)H ] B_(8,7;8)-2B (8,p+j;0))
n n n
y:p#l Y*p*l
Fn(a,eﬁﬂ
pek pek

L y=p+l ysp+l

After some simplification, we get, for t,j = 1,2,...,k,

T

H ] B (a,vi®)-2B_(o,pet; )M ] B (8,7;8)-28_(5,pei;5) )

-—

-




(2.30)
UNCHIE
0 p+tk  p+k - p+k - _
Y@ B (o,B58) -2 ] B (B,p+j;6) + B (p*i;p+j;8)
a=p+1 B=p+1 g=p+1
i) pti  #p+i #P+j
2
p+k  p+k _ p*k - _
-] ) B (a,8:8) + 2 ) B_(8,p+2;8) - B_(p+2;p+L;8)
a=p+1 B=p+] B=p+l
#p+e  #p+L #p+L
p*k _ _ _
{ ] B_(a,v;8;}*{B_(8,p+2;8) - B_(8,p+j;8)}
n n n
Y:p#l

P —
277 F (a,8;8)

a,B=1 _ _ - _
=B (3,p+1;8)B_(8,p+2;8) + B (a,p+j;68)B (8,p+;0)

J

We now proceed to examine the asymptotic properties of JA(ilj). A lemma,
which will be useful in determining the asymptotic distribution of
J;(llj) is first proved.

For a =1,2,...,p*k, let

- _ Ptk - .
(2.31) A (a;8) = A (a;8) - 821 /n(w, (n)-8,)B(a,8;8)

Lemma 2,3 If the true parameter point for X 1is w(n), w(n) ¢ R; (E)(g),
n

then K;(l;a),xh(z,g),...,x;(pOk;;) tave asymptotically a joint normal
distribution, with zero means and covariance between KF(J;F) and

Kh(d;g) given by B(a,8;8).
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Proof: If w(m), w(n) e R; (53(5), is the true parameter point for
n

X, then for o = 1,2,...,p*k,

d
| 35 log f(xi,e)'
=] Q g

Ew(n) [An(a;g)] & Ew(n)'

1

3 |-

@™

/m [ £(x,u(n) 35— log f(x;e)' dx

- G0 a e

(2.32)

= /n f f(x;6 + (w(n) - 8)) %5— log f(x;e)l dx
- Qa —
<]

Expanding f(x;w(n)) around 6 and denoting, for notational convenience,

%3— log “(x;9) - by %3' log f(x;8), we obtain for a = 1,2,...,p+k,

a ) a

20

— — 1 -
E, (A (28] = /A _o{ £(x;8) T log f(x;8)dx
. pfk /i (w, (n)-7,) }o 2 _ f(x;8) 21— log f(x;8)dx
e Nwgin)=9g 36, 1X:0) 35— 1o Blx;
= - 8 a
/n g"‘ _ — % a%f(x;u(n)) o —
(2.33) ¢+ = )T (w(MF)wm-s) [ : log f(x;8)dx
7 b Ly eI L Tae ee 38
where u(n) ¢ R: (g)(g).
n
Thus,
_ p’k '/_ - K 3 _ a '— _ d
Eu(n)[An(u;u)] = Bgl n(wﬁ(n)-ee)-{ 3;: log f(x;8) 35; log f(x;2)f(x;v)dx

+k . 2 . )
. ig . §.§ (ue(n)-gé)(uy(n)-g;)-i J f;:.géSQ) ;5: logf (x;9)dx

. gt g
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or,
= prk - -
E ) [An(ai®)] = 321 /n(w, (n)-8,)B(a,8;6)
(2.34)
+ fg: §+§ (w(n)=6,) (w_(n)-6_) ?azgéx;;én)) ge log £(x;8)dx
B,y=1 B B Ty el LRI i

where u(n) ¢ R; (g)(E) .
n

From (2.34) and the assumptions made in Section 2,1, it follows

that
. _ p+k _ 5
Ew(n)lAn(a;e) - BZI /E(ws(“)'ee)3(°’3;el!
{2.35) - _
M _(8)

« k(o) =
n‘n

where K(8) 1is a fixed positive constant, Thus from (2.35), it follows

that for a = 1,2,...,p*k, Ew(n)xg(a;§) converges to zero.

Also note that, for a,8 = 1,2,...,p+k,

COVw(n) [Kn (u;g) ’Kn(Big)] = Covaru(n) [An (Q;E) ’An(s;a)]

Ew(n)[An(a;e)An(s;E)] - Ew(n)[An(a;a)]Ew(n)[An(e;E)]

Rl

[ S 1o E(GF) 35— 1og £0T) £(x;u(n))dx
o) a 8

= E () a5 0)E, () (A (858))
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Using algobraic simplification as for L (n)lkn(u;F)], and following

-
the assusptions made in Soction 2,1, 1t can be shown that tho covariance
betweon X“(u;v) and ;"(u;") COnvVergos to B(a,8;0) for all

win) « u“ (z).

Nn(ﬁ)
The asysptotic joint normality of An(l;ﬁ),An(Z;E),...,An(pok;E)
1S a standard rosult used frequently in the literature (See, for example,

pP. S00 of Crasor (13)). Using that, the proof of the lomma 1s hence

coaploto, Q.L.b,

Substituting from (..531) 1n (2.26), we obtain, for ¢&,) = 1,2,...,k,

(2.30)
ety

/’ 5oL B s FmeD 5
exp /-2cA_(poti) - 7 1] /(e T )A(e,-5,08 (a5 )]

u a,Bupe] H,

ok
7 — == N
exp ,=2CA_(pe);v) - g Z /;(v -9 )/n(o -0 )B (0,8;6)! }
L n 7 a,Bepel a a g en H.

Mn(?}') un(t)
pek

[J exp( S-Q(T\'ﬂ(g;e‘) ) /E(J‘(n)-u")s(u,»;ﬁ)

J as) ro)
M (F) -u (F) pek - p _
n n - ) Bn(u,y;K)-ZBn(u,poi;o)])- % »Z ¥ w B (0,050) )
\'P'l u,ﬁ'l
dw,, .o, ,dw
LN SR N . — R R
M".g”) M ) ) ok
i o0 e s 00 Q‘P( i 'g(xn(xl;;) * z /E(U (n)"j )8(1l.|;t—‘)
Jj ] pe] yel ' '
-M_(8) -M_(®) peh p
- - | R -
o sl D B @28 (apeiBID - 3 [ w B (a,E:F))
vyepel a,psl

dw,,...,dw
! p




B
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Rearranging terms, we get
' a
J @1y

+k
" /n(6_-0 )/n(0,-8.)B (a,e;§)| 1
a,§=%01 @ a I HQ_

O o=

cxp[ -2cA (pee,f) -

= ~
cxp[;-ZcAn(poj;C) - % . Z-EOl /F(BG-EA)/R(OB-EE)Bn(G.BZE)’“.}

ro]—

' P .
J exp[- L (wa-ttl,g(n))(wa-zs.ﬂ(n))un(u.e;e)]dwl....,dwp

—

...r . 1 sz (W -t .(n))(w.-t. .(n))B_(a,r:;8) | dw dw
. | cxpl -5 o n a~te, n))B (a,f; (roeerdv,

a,gs]

where, for a = 1,2,,..,k, t =1,2,...,k,

-

v N R - _
oM o F s )R (8) . ) /K(wy(n)-OY)B(a.v;G)
pal ysl
-c[ ) B (B,v;®) - B (a,pee;9)]
el n n "’
/VOE

and

P, ‘ -
"z.“gl €, (M, ()8 (a,859)

"o -

(2.39) At(n) .

If we let u s w -t (n) and v = w -t (n), then after some
1 (U u a  a,)

simplification, we obtuin, for i,) = 1,2,...,k,
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(2.40)
JrGl,i) =
M (e)-tl’l(n) Mn(—)—tp,g(n)
P -
LN N N A" ER AN -J exp[- %QZBZI ual‘BBn(a’B;e)]dul,...’dup
- Tl -MHEE]-tI,EEnJ —MH{E]-tPJE{n}
n Mn(gy-tl,j(n) Mn(U)-cp.j(n)
1 P -
[.............. exp[- 5 ] ] V V. (a,8;0)]dv ,...,dV
J [ & GE:B:I Sy 1 P

N _(8)-t, . M (N-t .
.n(e) tl’)(n) Mn(" tp’J(q)
In order to show that J;(llj) is arbitrarily close to J:(zlj),
it is sufficient to show that the integrals in the numerator and denomina-
tor of (2.4) are, for cufficicntly large n, with any probability less
than one, within an arbitrary positive constant ¢ of their common

timic (2n)P/? |71/

, whiere |B| is the determinart of the matrix
B, whose (a,e)th element is B(a,8;8). For that it suffices to show
that the limits of integration converge stochastically to (-=,») as
n- =,
This will be sufficient, becausc then by replacing the limits of
integration by (-+,2), the ¢ {ect on the numerator of JB(‘I)) is to
multiply it by qn(a) where qn(z) converges stochastically to one.

Similarly, the eflcct in the denominator is to multiply it by qn(j),

where qn(j) corverges stochastically to onc.
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From (2.38), we obtain for a =1,2,.,..,p, 2 =1,2,...,k,

-~ i)
ty, M = I F 80 K (858) + ] /n(e ()-8 )B(8,Y;8)
B=1 y=1
Pk _ -
-cl ] B (8,y;0) - B (8,p+1;8)]
Y=p+l
) #p+L J
prk _ - _
= !, o+ ] e (n)-8) E[Fn(a,S;B)B(B.Y;B)]
’ y=1 Y Y g=1
or,
prk _
= ¢ -
(2.41) ta.l(n) T YZI /rT(wy(n) 6y)6n(a,y)
where,
k — —
(2.42) § (a,y) = ] F (a,8;8)B(z,y;6)
n n
B=1
and t; 2 remains bounded with probability approaching one as n -+ -,

Since Fn(a,ﬁ;g) converges stochastically to F(a,8;8) (a,s8 = 1,2,..,p)

as n 1ncreases, it follows that

f
stoch, Y 2y
(2.43) 8, 0y) — y = 1,2,...,p.
n-+»xo
1 a = y L

It also follows that én(u, pst), ¢ =1,2,...,k remains boundcd

with probability approaching one as n - «,




L

L 7
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Thus, if 4 (n) ¢ RE (5)(6)' we obtain from (2.41), for 4 =1,2,..,p,
n

Qs 1,2'llt’k'

k _ P
(2.44) |tM(n)| < |t;’i| + L Ezllé(a,pﬂlﬂ + L (@ Yzl|én(a.y)|

p
where z Ién(a,y)| converges stochastically to one as n » », for
y=1

a = 1,2,...,p. This implies that there exists a sequence {gn},

B 0 lim €n = 0, such that,
o

(2.45) lim P{ E lén(a,y)l <lee o= 1,2; seempds =l o
n+w Y=l

From (2.44) and (2.45), we thus get that for any given ¢ > 0, there

exists K(¢) < », such that

(2.46) (It ;] < K@) + L @) (1ec )} > 1 -

Po(n)

for any w(n) ¢ R?

7 (8) .
NO)
Choose the sequence (Ln(y)) to satisfy the following properties.

(2.47) lim L_(8) = »
pex N
L, ® L ()
(2.48) B _ < 1 forall n and lim Le— = 1
Mn(e) n+o Mn(e)
and
(2.49) ,l,i.T,[M"(g) s (mn)Ln(a)] & a
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That it is not difficult to find such a sequence is illustrated by
the simple example L (8) = (1+¢ )™ [M_(8) - Mrl‘/Z(E)]. Using (2.46)

and the sequence {Ln(g)} as selected above, we get that with probability

greater than 1 - ¢,

MO -t ) < M @)+ K@) v L () (1ve)

(2.50) = -[Mn(e_) - (1+en)Ln(é’)] + K(¢)
-+ - as n -+ o,

and,

(2.51) Mn(g) - ta,z(n) > Mnﬁii - K@) - Ln(5)(1+en)

Using the above result and lemma 2,2, we have thus proved the

following,

Lemma 2.4 For &3y = 1,25 me, K
T wroliy . .
(2.52) log J_(2]5) log Jn(efj) « z (2])

where Zn(ﬂlj) converges stochastically to zero as n -+ « for all

. n -
parameter points w(r), w(n) € RLn(E)(e)'




~
-
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As a consequence of the above lemma, in order to study asymptotic
behavior of Jn(Qlj), we need only study the asymptotic behavior of
11" T
Ineli).
Using (2.28) and lemma 2,4, the Bayes decision rule for the problem

reduces to the following:

For £ =1,2,...,k select H2 if

14

) = B = =
2c(A (p+3;8) - A_(p+2;8)) + 2¢ GZBEI A (;8)F (a,8;8)B (B,p+2;8) - B (8,p+];6)
(2.53) ’

b
2 - . . j .
+C Vn(G;EIJ) +Z (¢]3) > log Fl 31 5250 e ke
. )

where vn(g;ﬁlj) is given by (2.30).

The Bayes decision rule divides the sample space into k mutually
exclusive and exhaustive regions, each of which a particular hypothesis
is selected. This is so irrespective of whether f(-;*) represents a
joint density, fun~tion or a joint probability mass function. Using the
regularity conditions imposed on f£(-;-), we do not have to worry about
the ties introduced into the problem due to equalities in relation
(2.53). Thus the results obtained in this section are not restricted
to assuming the existence of a joint probability density function for
the joint distribution of the random variables.

For £,j = 1,2,...,k, let
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! o P . -
A (p+3;B) - A (p+2;8) + uzegl A, (@;T)F (a,8;8) -
8=

Wo(215)

(2.54)

[ =, =
< \‘Bn(s,p*ﬂ;GJ-Bn(B,pﬂ;6_'

Rearranging terms in (Z2.53) and using (2.54), the Bayes decision rule

reduces to the following:

For 2 =1,2,...,k, select H2 if

b.
. 1 2, — . - .
(2.55) W @) > oz (log gi‘ V@l §) 4213} § = 1,200k,

where, Zﬁ(llj) converges stochastically to zero as n + «, if the true

n

Ln(57(e) . Also V(8;%£]j) is a non random

parameter point w(n) ¢ R

continuous function of & for all £, (1,5 = 1,2,...,k). v(§;2|j) is
obtained from (2.30) with the random variables in (2.30) replaced by

the constants to which they converge. Because of the symmetry introduced
in the problem by redefining the parameters ¢ by (2.1), we may conclude
for the problem of ranking from several univariate or multivariate popu-

lations, when the observations between populations are independent, that
(2.56) V(3;2}j) = 0 for all 2,j (2,j =1,2,...,K)
In obtaining the above rcsult, we have used the following realtions

B(Q’B;e—) B(QDY;-O-) a=1,2,.00,p

(2.57)

B(8,8;8) B(v,v;8) B,y = p+l,p+2,...,p+k




=N

and

(2.58) B(B,y;8) = O B #Y, B,y =p+l,p+2,...,p*k

If for the problon of raorking from a single muitivariate protlem

(for which (2.57) holds but not (2.98)), we assuue that

(2.59) B(8,v;8) = B(§,n;8) B £y, 6#n, B,v,86,n = psl,pe2,..,p+k

then (2.56) still holds. From now on we assume that this is so and hence
the results are appliccble in ranking fiom a single multivariate popula-
tion for ccses for which (2,79) holds,

Thus the Bares decisicn rule muy be wewritten ac follows:

For R =1,2,...,k, select “t if

*)ir—-
~
[ 2]
2
03
C‘LJU‘
+
(3]

(2,60) wn(zlj) > @33 hRC I e JENEY 8
To study the asymptotic behavicr of the Buves decision rule, we proceed
to study the asymptotic joint distribution of the random variables wn(llj).

The asymptotic distributrion is given by the following theorenm.

Theowem 2,3 If w(n) 1is the true parancter point for X, w(n) ¢ RE (6)(5),
n
then for firxed 2 (2 = 1,2,...,K), {wn(z}j); j=1,2,e..,k, 3 # 2} have

asymptotically a joint normal distribution with mean and covariance matrix

given by

A
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prk - -
EW (¢]j) = ] /E(wY(n)-eY)[g(p+j;v;57 - g(p+2;v;8)] j £ &
Y=p+l
and
Cov(W (2]3),M (2]i)) = s(3,i,i)  i,j #2

where g( ) and s( ) are continuous known functions of 8 (g(*) and

s(*) defined later on in the proof).

Proof: For each fixed &, wn(z:j) are linear combinations of
An(a;e), a = 1,2,.0.,p*k; it fcllows from Lemma 2,3 and a standard
result in literature on linear combination of random variables with
asymptotic joint multivariate normal distribution (see for example

Rao [40]) that for fixed &, {Wn(llj); j # &} have an asymptotic
joint normal distribution. It only remains to determine the mean and

covariance matrix.

Rewriting Wn(llj) in terms of Kﬁ(a;ﬁ), we get from (2.7.) and

(2.54),
w213 =
(_ _ Pk - - P E —
Ra#3®) + 1 /nlw ()-8 )B(p*3;v;8) = )] F (a,8;8)B (8,p+;8)
< y=1 a,B=1
s e - -
* (R (a;8) + YEI /n(u ()-8 )B(o,v;8)) )
ptk - - P 1 —
AL(p+238) + ] /n(w (n)-8 )B(p*e,v;8) = [ ] F (a,8;8)B (B,p+2;6)
_< y=1 i i a,B=1
S - -
- Ry (39 + Ygl/ﬁ(mY (n)-8_)B(0,Y;8)) )




or,

(2.63)

)., ..
Wl
p+k
Y=p+l
p*k

Y=p+1

(2.64)

W@
n

23)

tt 1T

<

I/E(wy(n)-5;)

-54-

Ko@) = Tl e Wl e wB ey

_ - - - .
(A (p+3;8) - GZBZI Fo(a,8;8)A (a;8)B (8,F+j;8))

- - P - - _
-(R_(p+2;8) - QZBZI R (@8)F (a,8;8)B (8,p+1;8))

= _ P = _ _
I /M ()-8 )(B(p+3iv;®) - [ [ Bla,y;8)F, (a,8:8)8,(8,p+);0))

a,B8=1

- P _ — _
- ) fﬁ(wY(n)-eY){B(p+2,y;9_) - 11 Blo,y;B)F (a,8;8)B (8,p+2;8)}

a,8=1

[B(p+j,v;B) - XPZ B(a,v;8)F_(a,8;8)B (8,p+j;8)]
a,B=1

P — _ _
11 Blo,viB)F (a,8;8)B_ (8,p+£;6)]

‘[B(P+2,Y;5) -
1 0,8 1 -

-
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From (2.42) and (2.43), we see that if w(n) is the true parameter
point for X, w(n) € RQ (5)(6), then for all £,y (&,y =1,2,...,k),
n

k
(B(p+2,v;8) - ) ) B(a,y;E)Fn(a,B;E)Bn(B,p+2;§)) converges stochastically
a,B=1

to zero as n 1increases,

Clearly, if we choose a sequence {Mn(ﬁ)} converging to infinity

P
= _ P _ - -
such that | M _(8)|(B(p+2,v;8) - ] ) B(a,v;8)F (a,8;8)B (3,p+£;8)}|
y=1 L a,B8=1 4 %

converges stochastically to zero as n increases, when w(n) 1is the

true parameter pnint for X and w«w(n) € R§ (53(5); then
n

stoch
———

(2.65) W a5 0

n o+ o

From now on we ascume that the sequence {Mn(E)} (on which we had
placed no restriction except as given by (2.3)) is so chosen,

For £ = 1,2,...,k, let

_ - p _ _ _
(2.66)  g(p+2,v;6) = bip+d,y;0) - ) ¥ B(a,v;E)F(a,R;8)B(3,p+2;06)
a,b=1

Yy = p+l,p*2,...,p*k .

Then from (2,61), (2,65)-(2.6¢), it follows th:t when the true

parcmeter point for ¥, w(n) ¢ R: (53(5)’ the asymptotic joint distri-
n

bution of Wn(2|j) is normal with mean of wn(ilj) as required.
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For 1,j = 1,2,..0,k, J # &, let
(2.67) Wl = RO -R (1
where, for & = 1,2,...,k,
(2.68) R (1) = K (p+1;8) - {p{ K$(a;§)Pn(a,e;5)Bn(s,k+z;3)

a,fs}

Then, in view of results obtained above, asymptotically, we get

Cov( (2]3),W (¢]i)) = Cov(i (2]5),W (2]i))
- B[R] ()] + E[R (DR (3))

= 3 - r i
E[R (1R ()] - EIR (2R  (j)]
Because of the symmetry in the problem, we get

. oy A . 2 _ Eln . .
(2.70)  Cov(i_(2lj).% (2]1)) = E[R ()] - E[R (2);2 ()] .
For 2 =1,2,...,k let

§ F (a,8;0)B (B,p+2;0)

(2.71) P (a,p+t) =
B=1
and,
(2.72) F(a,p*2) = § F(a,B;0;3(8,p+2;8) .

=1

RTINS S I Lt
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Then, using (2.67), (2.68), (2.71) and lemma 2,3, we get for i f j,

Cov(W (2]3),W (2]1)) = B(p+r,p+2;8) - B(p+e,p+i;e)

(2,73) =
= B(p+e,p*2:6) - B(p+2,p+j);6

Denoting the right hand side of (2.73) by s(6;2,i,j) completes the

proof of the theorem,
Q.E.D.

Because of the inherent symmetry in the structure of the ranking
problem and because of the way in which we have redefined our parameter
(Eq. (2.1)), we note that the decision variables have asymptotically a
normal distribution with a common correlation coefficient, This makes
it easier to compute certain probability integrals needed in computing
the Probability of Correct Selection and thus the Bayes risk for the
problem, Tables of integrals for equicorrelated multivariate normal
variables by Milton [34] and Gupta [21] can be used to obtain the Bayes
risk for any particular prior distribution,

In order to determine an asymptotically mininax decision rule for
the problem it follows immediately from Theorem 2.1, Theorem 2.3 and
(2,60) that because of the symmetry in the problem, the Bayes decision
rule given by (2.60) is an asymptotically minimax decision rule if we
set, for j = 1,2,...,k, bj = % . Thus, an asymptotically minimax

decision rule for the sequencc of artificial k-decision problems is as

given below:

S - 5 oW o Fioo . wSEEN- o 3-Es. e p—




For 2= 1,2,...,,ks select Hz if

(2.73a) W@l > 0

where wn(nlj) . is given by (2.54). The decision variables have a

limiting equicorrelated multivariate normal distribution with mean and
L _(8)

M (8)
n
as n -+ =, the decision rule given by (2.738) is an asymptotically

+ 1

covariance matrix as given by Theorem 2.3. Recalling that

minimax decision rule for the sequence of artificial k-decision problems.

2.4.2 Asymptotically Optima) Procecdure for the '""Real' Problem

The above sequence of problems was artificial because we assumed

5&,55,...,9 to be known, We now proceed to the real problem, where

I3

nothing is known about the values of the nuisance parameters (61,....ep);
and with the loss function as given by (2.18), we want to develop an
optimal procedure to select the best population,

We first define some additional notation, Let §l(n),§2(n),...,5p(n)
be estimators based on X of el,...,ep. such that for any ¢ > O,

there exists D(e) < =, such that

(2.74) p m]8. (-6, < D(e)  i=1,2,...,p} > 1-c¢
el,...,ep, i 1

{H is true}

where {H is true} implies that one of the p hypotheses given by

(2.17) is true.
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It is worth noting here that the above condition on the estimators,
is only a consistency condition, certainly desirable for any estimator.
Maximum Probability Estimators of (81,...,8p) could be used, although
any set of consistent estimators satisfying (2.74) would suffice.

For notational convenience, let
(2.75)  8(n) = (8),8,(n),8,(n)seee, (0,8 0eeesByy)

Also define for & = 1,2,,...,k,

" P - o
-(A (p+2;8(n)) - ] [ F(a,8;6(n))B(8,p+4;6(n))

(2.76) T'(L)
. a,B=1

+ A (a;8(n)))
and,
(2.77) T (8) = =A_(p+2;6(n))
Also define for £ # 3 (2,j = 1,2,...,k)
(2.78) W) = T -T3G) = T® - TG)

Then, an asymptotically optimal decision rule for the problem of

selecting the best population is given by the following theorem:




Theorem 2,4 An asymptotically optimal decision rule for selecting

the best population is given as

Select H2 (n, as the best population) if

L

(2.79) T > T () A
0,3 = L2000k .

Proof: It suffices to show that the decision rule defined above has the
same asymptotic probability of correct decision as the Bayes decision for
the artificial problem, which was also shown to be asymptotically minimax,
It will be sufficient because then the decision rule has, asymptotically,
the same '"risk" as a Bayes and minimax decision rule and hence is an
asymptotically minimax (optimal) decision rule,

H In order to do that, we obtain the asymptotic distribution of

wn(llj). From (2.78), we get

(2.80)

V el -

~ p ~ - ~
A (p+j;0+6(n)-0) - [ ] A (a;0+8(n)-8)F(a,8;8(n))B(B,p*i;6(n))
a,B=1

A p ~ ~ »~
- (A (p*2;0+6(n)-8) - [ ] A, (a;0+8(n)-0)F(a,B;8(n))B(8,p+2;8(n)}
a,B=1

Expanding around 6, we obtain for a = 1,2,...,p*k,
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A 2o S -
(2.81) A (0;6(n)) = A_(a;0) + YZI /(s (-0 ) (-B (3,Y;8)) + R (a)

where Rn(a) converges stochastically to zero as n + = , Substituting

from (2.81) in (2.80), we get

(2.82)
Wl -
I pk o p " -
A (p+3;8) + [ /n(e -8 (m)B(p+j,v;0) - [ I F(a,B;B)B(8,p*j;B) »
= Y y =
v=1 a,B=1
p+k -
(A (a;0) + Yzl /xT(eY-eY(n))B(a,y;e)}
~ p+k R
A_(p+2;6) + ] /n(6_-8_(n))B(p+L,v;8) - ZPX F(a,B;68)B(8,p+L;6)
n y=1 i a,B=1
- ptk 2
(A (0;0) + Yzl /n(8 -6, (n))B(o,;6)) |

+ Q25

where Qn(llj) converges stochastically to zero as n increases,

Rearranging terms, we get
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(2.83)
W@l -
(gt - 7
] (A, (p*5;0) - Hl F(a,8;0)B(8,p+j;0)A (a;0))
a,B=
p
1:(An(p+2;6) - 11 F(a,8;0)B(8,p+2;0)A (0;6))
=]
a,B )
,— p -
(B, (p+j,vi68) = 1] F(a,8;0)B(B,p*j;6)B (,v;6))
prk R a,B=1
+ 1 /n(e-6 (n))
vepel VT (B (p+L,Y;0 sz F(a,8;8)B(B,p+2;6)B_(a,v;0
o ;n(P »Ys ) - - B:l (Q:B: J (B)P ’ ) n(aoY; ){J

e

p—

P
(B, (p+3,v;e8) = ] ] F(a,s;e)B(B,pﬂ‘;e)Bn(a,v;e)).1

= a,B=1
) /n(s, -8, (n))

v=1 . P ' N
'\Bn(P""l,Y;e) z Z F(G,B;O)B(ﬂ.p+2;0;nr(O,Y;e))
b Q,B"'l ' Y !

+ Q&) .

\
~n(g:j) is of the same form as Wn(ﬁij) in

Since in (2,83), W
(2.60) and becauce of the proparties of estimators (51(n),...,§p(n))
(i.e. (2.74)) it follows thaz Nn(zlj) has the same asymptotic normal
distribution with mean and covariance matrix as given Ly Theorem 2.3,

Since the decision rule given by (2.79) is equivzlent to selecting
Hy Ak wn(z|j) > 0, as in (2.73), it follows immediately that the
decision rule given by (2.79) has the same asymptotic Bayes risk and

is heace an asymptoticzlly minimax procedure for the ranking problem,

Q.E.D.

Svegwee sop ety v e e (fw bp g SR AU S % me es e gpmp Pe Pyest  tiswe oty greee mpvas b e e R T
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In the development of an asymptotically optimal procedure for the
problem of selecting the best population, we considered a restricted
parameter configuration (as given by (2.17)). The general parameter

configuration may be repcesented as follows:
For ¢ =1,2,...,k,

ep+£ = p+2 - c//ﬁ

(2.84) H, :

L
+
(g]
~

=)

(99
n
—

-
N

-

L]

L ]

L d

-
>

@

6 .. A .
P*) P*) J

where, cj >c >0,

A word of explanation is in order here. In (2.84), hypothesis HE

. is the best population; and the distance between the best
c+C,

population and the other populations are -7:1 » (G =1,2,..0,k,5 # 1),

n

implies that T

For the case where cj are all equal, we get the restricted configuration
given by (2.17) and the case where one or all of cj are different, we
get a general parameter configuration,

Now, we must show that the procedure given by Theorem 2,4 is indeed
asymptotically minimax over the parameter space. This follows very easily
since for a general parameter configuration given by (2.80), the proba-
bility of correct selection increase, whenever for any j, cj > ¢, This
implies hence that the configuration given by (2.17) is the least

favorable configuration and hence -the procedure given by Theorem 2.4 is

indeed asymptotically minimax,
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2.5 The Rate of Convergence of Decision Variables to an Asymptotic
Normal Distribution

In our analysis, we have shown that our decision rule (procedure)
is asymptotically optimal. In order to completely specify the test,
asymptotic normality of the decision variables is used. It would be,
both from a theoretical and practical viewpoint, very useful to determine
the rate of convergence to the asymptotic normal distribution. From a
practical viewpoint, to an experimenter, who for large sample size n,
would act as if the asymptotic distribution is the actual distribution
(which it is, to a close approximation) it would be helpful to know how
fast the asymptotic results take over. The results on the rate of con-
vergence would supply that information,

In this section, we present the main results on the rate of con-
vergence in Central Limit Theorems for a set of independent random
variables (one dimensional or multidimensional). The results on rate
of convergence for one dimensional random variables are useful for the
problem of ranking two populations, which can be easily shown to be a
one parameter problem. The results for the one dimensional case would

equally well apply to the paper by Weiss and Wolfowitz [55].

Rate of Co:vargerce in tne nimensional Cemiral Limit-Theoren

Let xl’x2"' 'An be iidependent and identically distributed
random variables with EX = 0, VarX =1 and EIXI3 < », Denote
n X ] _tz/z
I X, by s and [—=e dt by ¢(x). Let
i=1

-to /:.n

T MR LNLRT S0 Ccrer s Sivepg g vt g p ot e o} e aep o vt by o S
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S
(2.85) A = sup(P{— < x} - o(x)

We state, without proof, the following theorems (on the rate of con-
vergence in a central limit theorem) of Berry [10], Esseen [18] and Katz [28]
in

Theorem 2,5 (Berry-Esseen)

3
(2.86) A < CE[X
R )
where C is an absolute constant,
Theorem 2,6 (Katz)
E(x%g (x))
(2.87) An < cl.__g___.
g(/n)

where C1 is an absolute constant and g(x) is defined on the real line
and satisfies
i) g(x) > 0, even, non-decreasing in [0,~) and

ii) x/g(x) 1is defined for all x and non-decreasing on [0,=). j

Theorem 2.6 is useful if one cannot make the assumption about
EIXI3 < », but would be much harder to apply, since the function g(x)
has to be specified. In case one can assume that E|X|3 < », Theorem
2.5 would be very convenient to use,
We note that by the Central Limit Theorem, An + 0 and from (2.86),
1/2

An converges at a rate of n ', The constant C in Theorem 2.5 is

given by the following result due to Zolotarev [S6].
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Theorem 2,7 (Zolotarev) In Theorem 2.5,
(2.88) ¢ < 1301

In our analysis, the randeom variables {xi, 1= 1,2,...,0 would
be replaced by a suitatie function of the original observaticns, «c dexined
by the decision variahles Tn(z) (see (2.78)). If besidcs the reguiarity
conditions, we alsc assume the existence of the 3rd aliolute moments,
we can use Theorem 2.5 and Thcorem 2.7 directly, The rate of crnverjarce
is of the order of n'llz and if the 3rd absolutc moment of the normalized
decision variables is small (it depends on the exact parametric fore «f

the probebility density function of the population= being canked) ir-

large sample results will be effective quitc rapilyy.,

For the general ranking problem for k populations (k > 3),
we need multidimensional analogues of the Berry-Esseen Theorem,
Let xl,xz,...,xn be i,i.,d. random variables (xi = (xli’XZi""xki))

each with distribution function F. Let

EX

ti Me

E(Xey - e

et
1
Q

(2.89)

for t=1,2,...,k

s e I B e . i, Sl o S .
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#lsv let A be the deteiv imant of the covariance matrix and Att the

corresponding principal my.ors of A (t = 1,2,...,k). Let

.
8 e 4 75 aud ist

{2.90° Fn(\, = P{ < x}

=7

wherc Sn and x are k dir«sional vectcrs. Let G(x) denote the
cdf of norma) random varisbics »iih same first and second moments as
that »f ?n{.).

Using the above notation, we have the following theorem by Sazanov

[42]) (stated without proof) on the rate of convergence.

Theorem 2.9 (Sazanov)

K Att
(2.91) supk|Fn(x) - 6(x)| < Cy(k) (t£1 —— o, )n

xeR

-1/2

As before, we note that the rate of ccnverocnce is of the order
n-llz. and if the constant terms in (2.91) are small enough, asymptotic
results would be effective quite rapidly., It may be noted, that for
our aralysis, since the decision vavizbles Wn(llj) (vlose rate of

convergence is being dctcrmined) have the siume correlation coefficient

and the same variances, in (2.91) we would get

(2092) t = lpz.ulo,k
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and hence a certain simplification would be achieved in determining the

right hand side of (2.91).

2.6 Examples

In this chapter, we have developed asymptotically optimal procedures
for selecting the best population, when the density function of the
observations satisfies certain mild regularity conditions (as given in
Section 2.1), It is interesting to note that for a large class of density
functions (satisfying the above mentioned regularity conditions), an
asymptotically optimal procedure for selecting the best population (as
given by Theorem 2.4) takes such a simple form, The populations are
ranked according to the value of the statistic Tl (as given by (2.77),
the population associated with the largest value of T2 being selected
as the best population,

We now give some examples to illustrate the applicability of the
results to specific distributions, The first set of examples indicates
the asymptotic optimality of selection procedures already proposed in the
literature., In the second example we give an asymptotically optimal
procedure for selecting the normal population with the largest mean, the
populations having common unknown variance. We also indicate how the
asymptotically optimal procedure would be used in practice for large
sample sizes, In the third example, we develop an asymptotically optimal
procedure for the problem of ranking Weibull distributions according to
the value of the scale parameter, when the populations have known location

parameters and common (known or unknown) shape parameter.

X s e o PR S ERE-= = -+ S el T ¥ Lol SRS It e s RS
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1, Asymptotic Optimality of Certain Selection Procedures already Proposed
in the Literature

As a consequence of the results in this chapter, the selection pro-
cedures already proposed in the literature for the following problems
are asymptotically optimal (the references in brackets indicate the
papers in which the procedures were proposed):
(i) Ranking variances of normal populations with known or unknown
means (Bechhofer and Sobel [8]).

(ii) Selecting the best of several binomial populations (Sobel
and Huyett [44]).

(iii) Selecting the multinomial event with the highest probability
(Bechhofer, Elmaghraby and Morse [6]).

(iv) Selecting the bivariate normal population with the largest
correlation coefficient (Ramberg [39]; also given as an
example in Eaton [17]). h

(v) Selecting the component with the largest mean in ranking from
a single multivariate population with common known variance
and covariance of the components., (Given as an example in
Eaton [17] and Milton [34]).

2, Ranking Means of Normal Populations with Common Unknown Variance

An asymptotically optimal procedure for selecting the normal
population with the largest mean, populations having a common unknown
variance, is to select the population associated with the largest sample
mean.

The procedure is the same, as one may expect, as one proposed by

Bechhofer [4] for ranking means of normal populations with common known
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variance, However, there is a difference in the probability statements
one can make, depending on whether the common variance is known or
unknown, In case the common variance is known, the experimenter
specifies, prior to experimentation, two constants (&§*, P*), with
§* > 0, %-< P* < 1, The sample size (n) needed to guarantee the
probability requirement is given as a solution to

*

g
where, 02 is the common known variance and A(P*) is, as given in

[4], the soluticn to

(2.94) J P lx + A(P*))E(x)dx = P
with
1 ";' x*
| ) = e
and
F(x) = ? f(y)dy

- 00

A(P*) is tabled in Bechhofer [4] (also in Milton [34] and Gupta [21])

and thus one determines the required sample size n(6*,P*) for any

prespecified constants (§*,P*),

o oo Tp oo . W e 1t e L tpew s o o M Sty o Ao £ o e P
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In case the common variance (02) is unknown, for a sample of
size n, the experimenter computes a consistent estimate az(n), say
the sample variance, of the unknown variance 02 and acts as if
32(n) were the actual variance 02. For any sample size n and the
computed Gz(n), one determines the pair A(8*,P*) satisfying (2.93).
Then, for a specified &* one finds the probability (P*) that is
guaranteed, (or for a given P* one can find the é* for which P*

is guaranteed.)

3._Ranking Scale Parameters of Weibull Distribution with Known Location

Parameter and Common (Known oT unknown) Shape Parameter

For a random variable X having a Weibull distribution, the cdf

G(x;8) 1is given as

(2.95) G(x;8) = Gl l,r‘a3
1 - expj= ( 2 1) x> 4
2 #
;
e

where 61 is the location parameter, 8, is the scale parameter and

0, is the shape parameter, 6 = (91,62,63) and the paramcter space

Q= {e|-m<el<m, 8, >0, 6,> 0},

2 3
In case the location parameter 61 is known, we may take 8, to

be zero with no loss in generality and get

(2.96) G(x;8) = 10y
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where 6 = (6,,6 and the parameter space ={e|62 >0, 6,>0},

3) 3
Defining the random variable Y as 1log X, denoting 6, by
e’ and denoting (B, 6;) hy 6 we find that the cdf F(y;6) oOf the

random variable Y is given as

(2.97) Fly;6) = 1 - exp [- exp(!-;—:-)
\‘ .

For the random variable Y having cdf as given by (2.97), B is the
location parameter and 63 is the scale parameter, Thus the problem
of ranking scale parameters of Weibull distributions reduces to the
problem of ranking location parameters of a distribution as given by
(2.97).

The density function f£f(y;8) of observations, with cdf as given

by (2.97), 1is given as

(2.98) £(y;0) = exp(lgf) exp(-exp(%))

3

For the ranking problem at hand, with density function of obser ~-
tions given by (2.98), the regularity conditions of Section 2.1 are
satisfied. Thus the results obtained earlier in this chapter hold and
an asymptotically optimal procedure is as given by Theorem 2.4,

Let Xti i =1,2,...,n) denote independent observations from

population nt (t = 1,2,...,k) each with cdf given by (2.96). Let

] T g e e LY . B R i Tl LW T O eted
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(2.99) Y 0 = log x o i = 1,2,.0.,“
ti ti te 12k
and, for 2 = 1,2,...,k
n l/e3
(2.100) 'I‘2 = 121 (xti)
Let the ranked value of Tl be denoted by
(2.101) T[l] < le] < e < T[k]

For selecting the Weibull population with largest scale parameter,
when the location parameters are known and the populations have a common
known shape parameter (63), as asymptotically optimal procedure (as

given by Theorem 2.4) is to select the population associated with T[k]‘

Let 2, <2, ¢ +=+e <1, denote the ordered values of
{Yti, = 1,2,.f.,n, t =1,2,...,k}. Then, as given by Weiss [50],
(2.102) 6, = - Dk#l nkfl {(1-§/nk)log(1-3/nk) }(Z. ., - Z.)
. 3 kT .0 8 i*1 75

is a consistent estimate of 63.

For 2 =1,2,...,k, let

-3>
4
o~
o~
><
N

(2.103) 0
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where 63 is as given by (2.102). Let the ordered values of fi be

denoted by

~

(2.104) 'i‘ i’i‘ i L Y W) iT

(k]

For selecting the Weibuil distribution with largest scale parameter,
when the location parameters are known and the nopulations have a common
unknown shape parameter (93), an asymptotically optimal procedure (as

given by Theorem 2.4) is to select the population associated with %[k]'




CHAPTER 3

ASYMPTOTICALLY OPTIMAL PROCEDURES FOR CERTAIN ADDITIONAL RANKING GOALS

In the last chapter, we have developed asymptotically optimal pro-
cedures for selecting the best population, for situations in which the
joint density function of the observations satisfies certain mild regularity
conditions., In this chapter, we extend the basic results to develop
asymptotically optimal procedures for certain other ranking goals.

The following two general ranking goals have been considered in the
literature:

(i) Selecting a subset of size s to contain at least d of the

t best populations, with max (1,s+t+l-k) < d < min (s,t)
(which implies max(s,t) < k-1)).

d,s,t are integers specified prior to experimentation,

(ii) Select the ks "best' populations, the ks-l "second best"

populations, the ks_z "third best'' populations, etc., and

finally the k, "worst" populations.

s
kl,kz,...,ks (s < k) are integers si:ch that Z ki = k

and (kl,kz,...,ks,s) are specified prior to experiﬁa%tation.

Bechhofer [4] in his paper alluded to the ranking goal (i), but it
was formulated and formally considered by Mahamunulu {33] and Desu and
Sobel [14]. It has been called Goal I by Mahamunulu [23] and we too
shall use that de.ignation. Two particular cases of Goal I are of
special interest: (a) Selection of a subset of size s (>t) which
contains the t best populations, and (b) Selection of a subset of
size s (<t) which contains any s of thc t best populations. In

Section 3,1, we consider a special case of (a), with t =1, We develop

-75-
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an asymptotically optimal procedure for this special case of Goal I, This
case is treated in detail, since it brings out the main steps needed in
extending the basic results in Chapter 2 to develop asymptotically optimal
procedures for more general runking goals. In Section 3.2, we treat a
special case of (b) with s =1, We develop an asymptotically optimal
procedure for this special case of Goal I. In Section 3.3, we give,
without proof, an asymptotically optimal procedure for Goal I. Bechhofer r
[4] formulated goal (ii) and considered two cases in detail, namely,

= k-t, k, =k, = ... =Kk = 1,

1 2 3 t+l

For the second case, we are interested in selecting the t best popula-

s = 2, k1 = k-t, k2 =t and s = t+]l, k

tions with regard to order., Bechhofer {4] considered this special case
and provided tables (to be used to determine the sample size needed for the
proposed single-stage procedure) for the case k = t = 3, This special
case of goal (ii) has been formulated as Goal II in Bechhofer, Kiefer and
Sobel [7) and we refer to it as Goal II too. In Section 3.4, we obtain

an asymptotically optimal procedure for Goal II. In Section 3.5, we point
out certain other possible goals in ranking and selection problems. The

method developed in this thesis could be adapted to these cases.

3.1 Selecting a Fixed-Size Subset to Contain the Best Population

In order to develop an asymptotically optimal procedure for selecting
a fixed-size subset to contain the best population, we formulate the

problem in decision theoretic structure, For i = 1,2,...,k, let
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. = @_..+c//n i = 1,2,000,kK
L Bpej * ¢/ i alitaae
(3.1) Hi:
i = B - c//n
where ¢ > 0 and 6;+j = ab+i all i,j (i,j = 1,2,...,k) are known values.
Eb*j may be taken to be zero with no loss in generality.

In view of (2.1), (3.1) represents a restricted parameter configura-
tion, in which if Hi is the true state of nature, then "i is the best
pupulation,

We now describe the basic method used in developing an asymptotically
optimal ranking procedure for this problem. TIn order to develop such a
procedure for the ranking problem, we develop an asymptotically optimal
procedure for an associated identification problem, with Eb, the common
location of the ranking parameter, as the least favorable location of the
ranking parameter., We first solve the problem for a restricted parameter
configuration, given by (3.1), and then show that the procedure developed

is minimax over all parameter configurations.

1
S

subset (of size s) containing the best populations, where I = {(il,iz,..,is);

Let D(I) denote the decision to select n.,ni xoxs) & ollis as the
2

it # it" t,t' = 1,2, 00058, it’it' = 1,2,.00,k}s I, the index set,
is a s-tuple whose components inidcate the s populations included in
the selected subset,

The loss function for the multiple decision problem is given as

—— e e ———— s . R CTETP I -
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0 if H, or H, or ""“i is the true hypothesis

(3.2) W(e;D(1)) = 2 s

kl otherwise

where I = (11,12,...,15).
There are (z) possible decisions, and we thus have a (Z)-decision

problem with simple loss function given by (3.2),

Preliminary Sequence of Artificial Problems

We now develop an asymptotically optimal procedure for a sequence of

artificial (z)-dccision problems (one for each n).

M (o M (8)
"( { < 9. < 9. + -1

O Y
i=1,2,.e.,p and (ep*l,ep+2,...,ep+k) satisfy one of the hypotheses

Suppose it is known that ei -

given by (3.1). 51,35,...,55 are known constants and 0 < ¢ < L, We
wish to select a subset of size s, and the loss function is given by
(3.2).

For the above prcblem, we construct a Bayes decision rule relative
to the following prior distribution:

For j =1,2,...,k, a total mass of bj is spread uniformly over

the set

s (= 1,2,...,p)
Y ooh

(3.3) 6. -

and ”j is true where; f{or j = 1,2,...,k, we have bj >0, and
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The prior distribution (bj' j=1,2,...,k) 1is arbitrary, but fixed.
Later we select the prior in such a way as to obtain a minimax decision
rule for the problem at hand.

Before we develop a Bayes decision rule, we define some notation

used later on. For j = 1,2,...,k, let

MW® o m®
'm P oA
n
(3.4) bj(n) = bj J---;"' J _ 121 f(xi;e,uj)del,...,dep
M_(8) M_(8)
g, - g -0
YA P A
Also let,
_ k
(3.5) bi(n) = bj(n)/tglb((n)

Then, we may view Fi(n) as the posterior probability for the
hypothesis Hj' i1f we consider bj as the prior probability,

In terms of notation of Chapter 2, for 2,) = 1,2,...,k

_ b. b[(n)
(3.6) Jn(1|J) = gi BETET

Let the ranked values of bj(n) be denoted by
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(3.7 b[l](n) < b[Z](n) < eesese < b[k](n)

In order to develop a Bayes decision rule for this problem, we compute
k(D(I);x) for each I and (in view of the results in Section 2,2) use
that to construct a Bayes decision rule,

For I = (il’iZ'”"iS)’

k
k(D(I1);x) = Z bj(n) - bi (n) - bi (n) - bi (n) - «ee - bi (n)

j=1 1 2 3 3
(3.8)
k
= § b.(n- ] b, (n)
j=1 i el Tt

From (3.8), it follows directly that a Bayes decision rule is to
select the s populations associated with the s largest values of

bj(n). In view of (3.7), a Bayes decision rule is to select populations

associated with (b[k52111"""b[k1(“)’°

Using (3.6), the Bayes decision rule can be seen to reduce to the

following:
Select ni ,ni ,....ni as the subset containing the best population
1 "2 s
if
%
J 1) > &
i
1
I
(3.9) Jn(lej) > b for j # (i,,i,5..0,1))
. 2 .
S b. b 1020~”nk
L i
Jn(‘slj) = bi
s

PP 3 - L , b P 3 3 e m . & e .
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The decision rule, as defined by (3.9), divides the sample space
into (:) mutually exclusive and collectively exhaustive regions, on
each of which a distinct set of s populations will be selected as the
best subset. Note, as a check, that when s =1, (3.9) reduces to the
decision rule given in Chapter 2 for the problem of selecting the best
population,

We now obtain asymptotic properties of the Bayes decision rule
given by (3.9). Since the assumptions and regularity conditions of
Section 2.1 hold, the asymptotic properties of Jn(llj). 259 & 1,2,0005ks
L$4j, obtained in Section 2.4 hold. Thus Lemmas 2.1-2.4 and Theorem 2.3
could be used to reduce the Bayes decision rule to the following:

Select ni ,ni ,...,ni as the subset containing the best population

Y 2 s
if
1 b.
- 1 J Ve L
hn(lllj) 4 2:(1°g bi * Zn(lllJ))
1
1 b.
. . 2 . ! . l
wn(lzlj) z :C(log b, ZQ(‘z'J))
- l
. 2
(3.10) i b.
5 i 1 M
(g9 2 Ltion gl v 230,10

1
S

j g paeai, i)

) = L,2,.00,k

where, as bcfore, Z;(itlj), (t = 1,2,...,5) converges stochastically

: , . n =
to zero as n iacreascs, if the truc parameter point w(n) € RL (g)(e)-
n
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Also Nn(il|j) are as defined by (2.54) and their asymptotic distribution
is as given by Theorem 2,3. Thus, the decision variables have, asymptoti-
cally, a multi-variate normal distribution with mean and variance given
by Theorem 2.3,
Using Theorem 2.1 and the natural symmetry in the multi-decision
problem, it follows directly that the Bayes decision rule given by (3.10)
1

is an asymptotically minimax decision rule if we set bj s for

j =1,2,...,k. Thus, an asymptotically minimax decision rule is given

as:
Select ni ,ni ,...,ni as the subset containing the best population
1 2 s
if
Wil >0 JF Gpiy,e,i))
W (,l5) > 0 3w a2 ik
(3.11) H
Wl >0
L (®
Recalling that + 1, the decision rule given b 3.11)
g that as ﬁ;??T g y (

is an asymptotically minimax decision rule for the sequence of artificial

(:)-decision problems,

Optimal Procedure for the 'Real" Problem
The above sequence of problems was artificial because we assumed
51,5é,....§b to be known. Ve now proceed to the real problem, where

nothing is known about the values of the nuisance pavawctc:s (ﬂl,“z,...,ep

)
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As before, let 51(n),52(n),...,§o(n) denote estimators of

respectively, based on the observations (Xl,...,X ). We

elpezp"Onep n

assume that these estimators s- “isfy the consistency condition, as given
by (2.74); one may use Maximum Probability Estimators (MPE) of (el,....ep)

as the estimators (él(n),...,ép(n)).

For notational convenience, let
(3.12) B = (8,8, (0),8,(n),00ns8,(0), B 100ensB )
For & =1,2,...,k, let
(3.13) T,(n) = -An(pﬂ.;a(n))
Denote the ranked values of Tl(n) by
3.14 T n T N)jyeeey T n
( ) [1]( ) = [2]( ), < [k]( )
Then, an asymptotically optimal decision rule for the problem of selecting

a subset of size s to contain the best population is given by the

following theoren:

Theoren 3.1, An asymntotically optimal decision rule for selecting a
subset of size s to contain the best population is to select the s

-9 ~y . TR}
populations associated with T[k](n),T[ka],...,T[kfgzl].
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Proof: It suffices to show that the decision rule given by Theorem 3,1
has the same asymptotic properties as the minimax decision rule (given

by (3.11)) for the sequence of artificial problems. That follows directly
from the proof of Theorem 2.4, completing the proof of the present theorem.

QoE.Dc

In the development of an asymptotically optimal procedure for the
ranking problem, we considered a restricted parameter configuration given
by (3.1). The general parameter configuration may be represented as
(2.84). As in Chapter 2, it follows very easily that the parameter
configuration given by (3.1) is the least favorable configuration and hence
the procedure given by Theorem 3.1 is indeed asymptotically minimax over
all parameter configurations.

In order to compute the probability of correct selection for the
selection procedure given by Theorem 3.1, one may use tables given in

Desu and Sobel [14] and Mahamunulu [32] for some special cases.

3.2 Selecting One of the t Best Populations

In order to develop an asymptotically optimal procedure for this new
goal, we formulate the problem in decision theoretic structure.
Let I = ((11,12,...,1k); ij =0 or 1, exactly t 1j equal

to 1, j =1,2,...,k}. There are (:) possible I and for any particular

I, let
(
J Eh’j - 7& if ij z ]
(3.14) Hery: e s n
P _ .
6 .+ — if i, =0
P*) /n )
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where ¢ >0 and & . =6 . all i,j (i,j =1,2,...,k) are known
p*) p*1

values. Here § may be taken to be zero with no loss in generality,

P+

In view of (2.1), (3.14) represents a restricted parameter configura-
tion, in which if H(I) 1is the true state of nature, then the t populations
for which ij =1in 1 are the t best populations. For the problem
at hand, this is the least favorable configuration,

In order to develop an asymptotically optimal procedure for the
ranking problem, we develop an asymptotically optimal procedure for an
associated identification problem, with 36, the common location of the
ranking parameter, as the least favorable location of the ranking parameter.
We solve the problem for a restricted parameter configuration given by
(3.14). Since (3.14) represents the least favorable location, the procedure
developed is asymptotically minimax over all parameter configuration.

For j =1,2,...,k, iet Dj dcnote the decision to select ﬂj
as one of the t best populations, There are k possible decisions and
(k) states of nature; thc simple loss function for the problem is given

t

as

(3.15) W(o,05) =

Preliminary Sequence of Artificial Problems

We now develop an asymptotically optimal procedure for a sequence

of artificial k-decision problems (one for each n).
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M_(8) M (®
n{ < 8, < B, ¢ "(-) ,

AT oA
: p k
i=1,2,...,p, and (ep¢l""'ep0k) satisfy one of the (t) hypothesis

Suppose it is known that §; -

given by (3.14). Here (5&,3},...,3&) are known constants and 0 < ¢ < L,
We wish to select one of the t best populations, with loss function
given by (3.15).

For the above problem, we construct a Bayes decision rule relative
to the following prior distribution:

For j = 1,2.....(:), a total mass of bj is spread ui’formly over
the set

M_(8) M_(8) L

- : 9 i F. + n i = 1,2,...,p

(3.16) 9=
Y

and Hj is one of the (:) hypothesis given by (3.14).

1 The prior distribution is arbitrary, but fixed, Later we select
the prior in such a way as to cbtain a minirmax decision rule for the
problem at hand.

Before developing a Bayec decision rule, we define some notation

used later on, For 1 = 1,2,...,(:), let
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_M @ M)

8, b——— O

1 ./;l' P ,/,T n
X EXXXXEXX] It f(xi;e’H(I))del.....de

(3.17) by(m) = b .
M () izl

- P
M_(8)

-— n -—

8

ol o P /i
Let the ranked values of bl(n) be denoted by

(3.18) b (n) : b (n) : xXXxxx i b (n)
(1) (2 ()
Also for j = 1,2,...,(:), let
W)
(3.19) bj(n) = bj(n)/’“Z,1 b, (n)

Then we may view F}(n) as the aposteriori probability for hypo-
thesis Hj’ if we consider bi as the apriori probability.

Using the above notation, for j = 1,2,...,k, we obtain

(3.20) k@©.x) = I b - ]bn)
y Sligt (1=(.,i i)]i, = 1)
G il S

Thus a Bayes decision rule is to select population ﬂj (decision Dj)
as a best population if 1 b () is maximized.
{1li,=1}
)

Note that for each population Hj, j =1,2,...,k there are (::i)

terms in the summation Z bl(n). Also there are many common terms
(1}ij=1)

occurring in each summation being compared., We rewrite the Bayes decision

rule (for convenience in analysis) as follows:
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Select "z if

(3.21) b, (n) ' bi(n)
{llgl-l} L (1]f;=1 1

v

)£ e
£,) =

1,2, .0 opk
Eliminating the common terms from the above, the Bayes decision rule
reduces to

Select 1, if

R
(3.22) I b > T b)) e
et ()t 8,3 = 12,0000k
1j-0 12-0

Now there are exactly (::f) terms in each summation above., Because
of the symmetry in the two summations, there is for every temm in the
summation at the left, exactly one term in the summation at the
right which has the same I except for the obvious change from
(i1 = 1, ij = 0) to (i2 =0, ij = 1), Thus we may rewrite the
Bayes decision rule as:

Select M, as one of the t best populations if

bl(il=1f"31=o;FP)
(3.23) > 1 j
bx(ij=1f"22=o;FP) 2

'y)
)= 1,2,..0,k

where FP is a fixed permutation of the remaining (k-2) terms of I,

R R T R SR RN I R s T T e T e T T TR = T e s




W¥e now study the asymptotic properties of the Bayes decision rule

given bs (3.23). The basic results obtained in Section 2.4 apply in this
case toc, The method of analysis parallels that used in Section 2.4 and
hence will not be repeated here. An asymptotically minimax decision rule
reduces to the following:

For % =1,2,...,k select m, as one of the t best population

if
(3.24) Weli) > 0

where W_(¢}j) is as defined by (2.54).
The decision rule given by (3.24) is Bayes decision rule for the
artificial k-decision problem for the symmetric prior distribution,

{bj = z%;, j = 1,2,...,(:D. As in Chapter 2, the symmetric prior gives
t

a minimax decision rule because of the natural symmetry in the ranking

problem being considered,

Optimal Procedure for the '""Real' Problem

The a.2ve sequence of problems was artificial because we assumed
5},55.;..,§b were known, We now proceed to the real problem where nothing

is known about the nuisance parameters (61,62,...,9p).

Let el(n),e (n),...,ep(n) be estimators of 61,62,...,6p respectively,

based on the observations (xl,...,xn). We assume, as in Chapter 2, that

these estimators satisfy the consistency condition (2.74). MPE could be




used, although any set of consistent estimators would suffice,

For notational convenience, let
(3.25) B = (Bpu8) (M),8,(0),000s8 (0,818 oyeeesT )
Using (3,13) and (3.14), an asymptotically optimal procedure for the

real problem is given by the following theorem.

Theorem 3.2, Aa asymptotically optimal decision rule for selecting one

of the t best populations is to select the population associated with

T[k] (n) [

The proof of the theorem parallels the proof of Theorem 2.4.

3.3 Asymptotically Optimal Procedure for Goal I

| In Sections 3,1 and 3.2, we have considered special cases of Goal

I and developed asymptotically optimal procedures for the special cases.
In this section, we obtain an asymptotically optimal procedure for the
more general Goal I,

The analysis for this problem is very similar to the one outlined
in Section 3,2 and will not be repeated. The least favorable configuration
for this problem is given by (3.14).

Let I be as defined earlier in Section 3.2 and let J denote
(jl'jZ""’jk)' where for t = 1,2,...,k, jt is equal to one or zero

and exactly s of the jt are equal to one, Also let D(J) denote

the decision to select the s populations for which jp = 1 in J.
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For the ranking problem being considered, there are (:) states
of nature and (:) possible decisions. The loss function for the

(:)-decision problem is given as

k
"o if I 4,4, 24
(3.26) W(8;D(J)) =§ o
!

otherwise

when I = (il’iZ""’ik) is the state of nature and D(J) 1is the decision
made,

The loss function, given by (3.26), implies that the loss is zero
if the selected subset of size s contains at least d of the t best
populations; otherwise the loss is equal to one.

For the ranking problem being considered, with the loss function
defined by (3.26), using (3.11) and (3.12), an asymptotically optimal

procedure is given by the following theorem,

Theorem 3.3. An asymptotically optimal procedure for selecting a subset

of size s to contain at least d of the t best populations is to

select the s populations associated with T[k](n)’T[k-l](n)""'T[k-sol](n)’

The proof of the theorem parallels that of Theorem 2.4 (with added

notational complexities) and will not be repeated,

3.4 Asymptotically Optimal Procedure for Goal Il

In order to develop an asymptotically optimal procedure for the rank-

ing problem, we formulate the problem in a decision theoretic structure.
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Let 1 = (il,iz,...,ik), where for j = 1,2,...,k, ij is equal to
an integer between 0 and t., Exactly (k-t) ij are zero and of the
remaining exactly one ij is equal to integer m (m = 1,2,,..,t). Thus
each 1 identifies a particular partition of the k population into t
ordered 'best set' of populations and a set of unordered (k-t) "worst"
populations. ("best set" here implies the set of populations in which
the best, second best, third best, etc,, and finally tth best population
are identified). Thus there are 1F§%TT distinct possible I, each
corresponding to a particular state of nature, (We are excluding from
our consideration any ties which may occur for the set of t best popula-

tions), For any one of the TF%%YT I, let

8 . +c//n if i. =0

3.27)  H{ ) = :

(3. D: e, ) i
8 . -(2i.-1)— if i.>0 = 1,2,...,k.
p*) ) V= j

where ¢ > 0 and 6§¢j = 6b+i (i,j = 1,2,...,k) are known values. Eﬁ*j

may be taken to be zero with no loss in generality, Here, (3.27) represents
a parameter configuration in which the best population has a value of the

parameter of interest y, 2d! units greater than the second best population,
n

which in turn is ¢ units greater than the third best population, ctc.,
n
and finally the tth pest population has a value of the parameter

2¢ : 2 .
— units greater than the remaining (k-t) worst populations, It follows
n

directly that this type of parameter configuration is the LFC for the

problem at hand under the indifference zone approach that we are considering,

ndiditinie IR - - . : Y e ‘
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(See Bechhofer [4] for definition of the indifference zone for such a
problem). However the indifference zone approach to this problem does
not restrict itself to considering least favorable configurations (LFC's)

th

in which the i~ best and (i+l)st best populations (i =1,2,...,t) have

the same distance between them (= 25 in our notation). The more general

n
C.

& b § .
setup with w[k-i] - w[k-i-l] = 75 (i=0,1,2,...,t-1) could be con-

sidered too; but since that only introduces more notational complexities
in the problem without adding anything new, we will only consider the
LFC as given by (3.27) (with the understanding that suitable changes
would be made in computing the probability of correct selection when
using the procedure for a more general setup, The procedure given below
is optimal even for the more general setup.)

Let J = (jl’jz""’jk)’ where for a = 1,2,...,k, ja is equal
to an integer between O and t. Exactly (k-t) ja are zero and of
the remaining, exactly one ja is equal to the integer m (m = 1,2,...,t).

Let D(J) denote the decision to select ﬂja (a=1,2,...,k) as
the (t-jaﬂ)St best population (for j. > 0), The remaining (k-t)
populations are identified as the set of worst populations, Since there

k! . ki Co : L
are  ToT distinct J's, we get (T distinct possible decisions,

With the above notation, the loss function for this problem is
given as follows:

For any particular decision D(J) and state of nature I,

(3.28) wW(e;D(J)) =
1 otherwise
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The simple loss function (3.28) implies that the loss is zero when
the right set of t populations are identified as the best set; and

the loss is one otherwise,

Thus we have a multiple decision problem with ?FgéfT possible
decisions and Ti%%TT possible states of nature (exactly one decision
is correct for each state of nature), This problem is very similar to
the problem of selecting the best population (k possible decisions and
k states of nature) considered in Chapter 2. The analysis involved
in developing an asymptotically optimal procedure for this problem is
a complete repetition of the analysis presented in Section 2,4, with
obvious modifications introduced by using (3.27) instead of (2.17) for
the least favorable configuration for the ranking problem., We thus do
not repeat the analysis and simply given an asymptotically optimal pro-
cedure for the problenm,

Using (3.11) and (3.12), an asymptotically optimal procedure is given

by the following theorem,

Theorem 3.4 An asymptotically optimal procedure for selecting the t
best populations with regard to order is to select the populations associated
with T[k](")'T[k-l)(“)""'T[ksgll) as the best, the second best, etc.,

and the tth best population respectively,

3.5 Certain Other Possible Goals in Ranking and Selection Probleas

The ranking goals considered thus far include almost all the goals
considered in the literature on ranking and selection problems (using the

indifference zone approach), As pointed out earlier, it is assumed that
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the common functional form of the density function of observations from
each of the populations is known, The populations are ranked according
to values of a parameter of interest y. There may or may not be other
unknown parameters in the distribution, which, when present, would be
classified as nuisance parameters for the ranking problen,

In actual practical applications, there may be situations where the
criterion for '"goodness" of populations is more complicated and must be
properly interpreted before a ranking procedure is developed. For
example, in many engineering applications, the quality of manufactured
goods is characterized by the product meeting some fixed specifications.
Thus, for example, one may be interested in selecting a manufacturing
process which has the highest probability of coverage of the specification
interval, For this problem '"Converge Probability' is the criterion for
""goodness' of populations. Guttman [22] and Guttman and Milton (23]
consider this problem and have developed procedures for selecting a
(random) subset to contain the best population for normal and exponential
density functions, when a one sided fixed tolerance region is the
criterion for "goodness',

In the example cited above and other related ranking problems, the
criterion for ''goodness' of populations may be specified, but ranking
procedures can be developed only after the criterion is translated into
a goal involving the parameters of the population., Two special cases
of interest may arise, First, it may be possible to redefine the
parameters of the populations in such a way that the ''criterion" is

translated into a parameter of interest Vv and there may or may not be any
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nuisance parameters, If the redefined parameters satisfy the assumptions
and regularity conditions of Section 2.1, then the entire analysis carried
out earlier in this thesis would be applicable. If the regularity condi-
tions are not satisfied, one may proceed to develop asymptotically optimal
procedure as outlined in Chapter 4 for non-regular cases. Secondly, if
after redefining the parameters, the nuisance parameters are functions

of the parameter being ranked, then special analysis would be needed for
each particular case, To our knowledge, the only paper in the literature
dealing with such a case is by Chambers and Jarratt ([12], which deals

with the problem of ranking means of populations when the variances are
a known function of the means being ranked.

We do not propose to consider problems falling into this second
category in this thesis, However, it should be pointed out that the
general method developed would be applicable to this class of problenms,
separate analysis being required for each specific case (each specific
case being characterized by a known functional relation between the
nuisance parameters and the parameter being ranked).

In our analysis we have assumed that the correct pairing of the
populations and the ranked parameters are unknown, but the values of the
parameters of interest are assumed to be unknown., Dunnett [16] and
Guttman and Tiao [24] deal with the normal means problem when prior informa-
tion is available about the possible values of parameters v, (i = 1,2,..,k)
and/or the correct pairings of the populations and ranked parameters. The

ranking goals considered are the same as the ones considered by us.




-97-

Although we do not concern ourselves with such Bayesian analyses of the
ranking problem, we should mention that the procedures that we have
developed are also asymptotically optimal from a Bayesian viewpoint;
that is when the apriori information is available about the possible
pairings of populations and the ranked parameters. This is so since

asymptotically minimax (optimal) ranking procedures were constructed

from Bayes decision rules for suitably defined multiple decision problems

by suitable choice of prior distribution,

Lastly we would like to point out that, in our analysis, we have
assumed that we know the functional form of the joint density function
of observations from the set of populations., This was used explicitly
in constructing asymptotically optimal decision rule, Hence, we are
not concerned with a class of nonparametric ranking problems, in which
the form of the joint density functior is not known, Different type

of analysis would be needed for such ranking problems.




CHAPTER 4

RANKING PRUBLEMS IN NON-REGULAR FAMILIES OF DISTRIBUTIONS

To this point, we have developed asymptotically optimal procedures
for certain ranking goals, for situations in which the joint density
function of the observations satisfies certain mild regularity conditions
imposed in Section 2,1. There are many functions which do not satisfy
these regularity conditions, but which occur frequently in practice.

The general method developed in previous chapters to obtain an
asymptotically optimal procedure for certain ranking goals, using the
regularity conditions, can often be used for the non-regular cases too.
However each non-regular case must be treated separately. The ba-ic idea
of using local Bayes rules to develop asymptotically optimal procedures
in the presence of several nuisance parameters would be useful in all such
cases, the actual analysis being different in each case (due to say,
different normalizing constants and the actual functional forms of the
distributions),

In order to illustrate the applicability of our method to non-
regular cases, we consider some particular non-regular density functions
and develop asymptotically optimal procedures for the ranking goals
considered earlier in this thesis for regular cases,

Before we consider such problems, we list certain non-regular
density functions which may occur frequently in practical situations,
The list contains most of the interesting known cases. Most of these

are taken from Weiss and Wolfowitz ([51) and [54]).
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4.1 Some Non-Regular Density Functions

Let f(xle) denote the density function of a random variable X,
characterized by parameter 6 (= (91,62,...,6m)), which in general may
be multidimensional, Let 0O denote the parameter spacc, a suitably
defined subspace of m dimensional Euclidean space (m being the dimension
of 8), Whenever m = 1, the parameter is denosted by 6 and for m > 1,
8 denotes the vector of parameters, each component being denoted as

0.

19 i = lngolo’m.

The following constitute some interesting ''non-regular" univariate

density functions,

I f(xje) = 0 for x < 8,

f(el+|e) = h() >0

where, 0 = {(el,ez)l-m <@, <w®, 0<B, < =}

1 2
Example - ) (x-el)
L e e2 for x> 90
)62 -1
0 otherwise
.

and O = {(el,ez)l-w <8 <=, 0<p, <),
II f(x|8) =0 if x <6 or x > B(8)
£(6+]6) = g(8) >0

f(B(9)-]8) = h(e) >0 .,
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dB

l
[
!

g, h and B' = I are continuous functions of 6, Also B(8) > 6,

(Note that I is a special case of II with B8(8) = »), @ 1is suitably

defined for each particular case.

, Examples (i) B' <0

] for 6 <x<1/8
1-86
(4.2) f(x|o) =
0 otherwise
where,
0 = {8|0 <6 <1}
(ii) B' > 0
3
1+ 5-(x-6) for 8 <x<8 +2/3
(4.3) f(x]e) =
0 otherwise
where,
: O={6'-w<e<co}

(iii) One of the end points is a constant; i.e., B' =

This case can be represented by the following:

Jfl/e for 0 < x <8
(4.4) £(x|8) =

1\ 0 otherwise

s cempsie - = B R T R R T T o T et IR o LBt S e T = o S o T =




-101-
where, 0 = {8]0 < 8 < =}
111 (
B for 0 <x <6
(405) f(X|6) = /\
1-Bx
15 for 8 <x <1
L 0 otherwise

where B is a known constant and

0 = {80 <6 <1}

v f(x]6) = 0 X< or x>,
g((8,,6,)) > 0

h((8,,8,)) > 0

f(el+|e)

f(ez-le)

g,h are continuous functions of (91,92).

Examgle
1
fe_e for elixiez
(4.6) Exlo,00) = { 2 °
1\ 0 otherwise

where,

0 = ((el,ez)le2 > 61}




V Double Exponential Density (Laplace distribution)

1
a1
(4.7) f(x|e) = 78_2 e 2 for - < X < ®

where,

0 = {(el,ez)|-u~< 8, <= 0<8y< w}

VIl Weibull Distribution

Jf 0 for x < e1
1/8
(4.8) F(x|8) = ‘ x-6 3

_1l-e€ 62 for x > 8

where,

x .
F(x|e) = [ f(yle)dy, 1is the cdf of the Weibull distribution,

-®

Also,
0 = ((8),05,85)[-e < B) <=, 0 < By <w, 0 hyc il
For this class of distributions, 6) is the "location'" parameter,
¥y is the 'scale'" parameter and 84 is the '"shape' parameter, If 8y = 1,

we obtain the exponential density function (as given by (4.1)) a special
case of the class of Weibull distribution, If 61 is known, (4.8) reduces
to the regular case,

Before proceeding to develop optimal procedures for some of the

density functions listed above, we review the literature in ranking and

selection procedures for non-regular cases.
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4,2 Brief Review of Literature on Ranking Problems in Non-Regular Cases

Sobel [43] developed sequential procedures for ranking scale
parameters of exponential populations, (as given by (4.1) in Section 4.1

and 9 is the scale parameter) with known location parameters (same or

2
different for each population) or a common unknown location parameter.

In the case of a common unknown location parameter, Sobel assumed that

if the unknown location parameter was greater than or equal to zero,

zero is taken to be the value of the unknown location (nuisance) parameter
and a procedure satisfying the basic probability requirement was developed.

Bechhofer, Kiefer and Sobel [7] developed sequential procedures
for ranking problems associated with the Koopman-Darmois family of
distributions; these would be applicable to ranking scale parameters of
exponential populations when the location parameters are known,

Barr and Rizvi [2] developed a simple-stage procedure for ranking
uniform distributions (density function as given by (4.4) in Section 4.1).
Using a zero-one type loss function (as we have done throughout), Barr
and Rizvi showed that the procedure they developed is minimax and is a
most-economical decision rule (in the sense of Hall [25]). They also
showed that the selection procedure may easily be extended to a larger
class of non-regular distributions, given in Hogg and Craig [27). This
class of distributions corresponds to Case II in Section 4.1,

Dudewicz [15) in determining the efficiency of a non-parametric
selection procedure given by Bechhofer and Sobel [9] (for the location
parameter case) against parametric alternatives, proposed single stage

procedures for ranking from uniform distributions (uniform between
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(6e-1/2, 6+1/2)). (The nonparametric selection procedure of Bechhofer
and Sobel {9] is also given as a selection procedure in Bechhofer,
Elmaghraby and Morse [6]). Dudewicz [15] proposed a midrange procedure
(i.e,, populations are ranked according to the values of

(max., of obs)+(min, of obs))
2

are ranked according to the values of the sample means) for ranking from

and a means procedure (i.e., populations

uniform distributions.

Mahasunulu ([32), [33]) proposed a single-stage procedure for
ranking k populations {ﬂi, i=1,2,...,k}, the selection procedure
based on suitable statistics TI'TZ"“’Tk‘ Ti is computed from a random
sample of size n from ni (i =1,2,...,k). The proposed procedure
is applicable to ranking populations according to Goal I (defined earlier
in Chapter 3) and for situations in which Ti is an absolutely continuous
random variable and its distribution function is stochastically increasing
in the parameter being ranked (see Lehmann [30] for definition of stochastic
increasing family of distributions),.

The procedure developed by Mahamunulu is applicable to ranking
problems associated sith the following non-regular families of distributions:
(i) uniform distribution (Case II in Section 4.1) (ii) exponential
distribution (Case I in Section 4.1) and (1ii) double exponential
distribution (Case V in Section 4.1). The proposed procedures are
applicable when no nuisance parameters are present (or they are arbitrarily
removed from explicit consideration), Mahamunulu also indicated how the

tables developed for the case of ranking means of normal distribution with
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common known variances could be used as an approximation for ranking frcm
other distributions, whenever the statistics used for ranking the popula-
tions (Ti) converged asymptotically to a normal distribution,

Mahamunulu ([33], p. 1082) pointed out that if a sufficient statistic
of fixed dimension for all n, exists (for the parameter being ranked),
then T. is some appropriate function of the sufficient statistic. The
choice of T, becomes a problem only when such a sufficient statistic
does not exist, 1n the latter case, the author advocates using a statistic
such that the induced family of distributions is a stochastically increasing

family of distributions,

4.3 Asymptotically Optimal Procedures for Ranking Non-Regular Exponential
Distributions

We now proceed to develop asymptotically optimal procedures for
certain ranking problems associated with populations having non-regular
exponential distributions. We develop, in detail, asymptotically optimal
procedures for selecting the best population (defined appropriately). We
then develop an asymptctically optimal procedure for other ranking goals
considered earlier in this thesis, Later, we consider non-regular uniform
density functions and dcvelop asymptotically optinal procedures for the
above mentioned rasking goals., The method of analysis used in this section

carries over to most of the non-regular cases.

Formu'stion of the Protlem

We formulate the problem in decision theorc.ic structure using the

notation defined in Chapter 2,
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Let )(t.1 i=12,...,n denote n independent observations from

Mo, t=1,2,...,k, each with pdf ft(ol-) given as
x-Lt
-(-1;-9
l— e t x> L
St -t
(4.9) f,(x]6) = f(x|L.,S) =)
| 0 otherwise
.

where Lt'st denote the two unknown parameters of the distribution

characterizing population nt. Here L, denotes the location parameter

t
and St' the scale parameter,

Two cases of interest arise here,

(1) Lt is the parameter being ranked; St is the nuisance parameter.

(ii) 1/St is the parameter being ranked; Lt is the nuisance parameter,

Each case is treated separately below. We first define some

additional notation,

Case (i) st is the common unknown nuisance parameter

For t =1,2,...,k, let

(4.10) wt z Lt

(4.11) S, = 8

and

(4.12) Ve ® % " %14 -
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Also for 1 = 1,2,...,k, let
r -
) aln'_ el*i - ¢/n
(4.13) Hi = \ _ |
el*j el*j + c/n J b= dyi2, o ere sk
L £ i

where ¢ >0 and 6 all i,j (i,j =1,2,...,k) are known

1ei = 31«3"
values, 31’1 is taken to be zero, with no loss in generality.

The above relations imply that we are ranking location parameters,
with the common urknown scale parameter being the nuisance parameter.

In the parameter configuration given by (4.13), selecting Hi as
the true hypothesis is equivalent to selecting n, as the best population
(i=1,2,...,k). The above hypotheses also imply that the best population
has a y-value which is E% units greater than that of the reraining
(k-1) populations, This corresponds to the least favorable configuration
(LFC) Zor the ranking problem under consideration under the indifference
zone approach,

For 1 =1,2,...,k, let Di denote the decision to select ni

as the best population., The loss function for the k-decision problem

is given as

0 1if “i is the true hypothesis
(4.14) W(eiD,) =

1 otherwise

L
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Asymptotically optimal decision rules (procedures) will be developed

for the above problem,

Case (ii) Lt 1s the common unknown nuisance parameter

(4.15)

(4.16)
and,

(4.17)

(4.1°)

where

6101

For t =1,2,...,k, let

Also for i =1,2,..,,k, let

B 3 Oy ot c//n
Hee
1 — .
el#J = Ol#j * C//r-l- J : ;lZ)OOO.R
c >0, gl*j = al*i all 1i,j (i,y = 1,2,...,k) are known constants

is talen to be zero, with no loss of generulity,

In this case 8 the ccumon uaknewn loc:t‘on rarameter, is the

Ik ‘

nuisance psrametcr for t.e prcblem of ranling scale parameters, Here,

(4.18)

reprcsents the least fuvorable configuration for the ranking

problem under consideration,
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For 1 =1,2,...,k, let Di denote the decision to select ni
as the best population., The loss function for the k-decision problem

is given by (4.14),

Preliminary Sequence of Artificial Problems: S, 1is the nuisance parameter

Before proceeding to the real problem, we solve a sequence of
artificial k-decision problems (one for each n) for case (i).

Suppose it is known that @ = 31 and (8,,05,...,8, ,,) satisfy
one of the k hypotheses given by (4.13). 51 is a known constant and
0 < c < L. We wish to test which one of the k hypotheses Hl‘HZ""'Hk
(given by (4.13)) 1is the true hypothesis. The loss function is of the
zcro-one type, given by (4.14),

For the above probleu, we construct a Bayes decision rule relative
to the following apriori distribution:

For j =1,2,...,k, bj 1s the apriori probability that Hj is

k
true hypothesis, where for j = 1,2,...,k, bj >0 and ] bj =1,
j=1

In order to obtain a Bayes decision rule, we must compute for
i=21,2,...,k, k(Di;x). and it can be easily seen that relative to the
above apriori distribution, and the loss function given by (4,14), a
Bayes decision rule reduces to the following:

For & =1,2,...,k, select H, as the true hypothesis (equivalently

T, as the best population) if

)2.'.'Dk

b.
s .
(4.19) J (@l3) > b_ln j

w "
=




s

where, for

(4.20)

satisfy Hj’

(4.21)

(4.22)

where, for

n
J (4.23) n

1=1
q and for t

(8,48 50008, ;)

where ft(xti
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’j = l,2,...,k,

[ N

J(213)

-

as given by (4.13).

f(xi;e,Hj) =

[I— N
lag]
—
»<

;G,Hj) is given by (4,9).

n k n
NOE(Ke,H) = [N
isl ) tel i=l

tFj

if
ft(xtx;e'”)) =
R

1 i=1

"
L SN

(Kei=tgre/m)

Here f(xi;el’Hj) denotes the joint pdf of (Xli’XZi""’xki)’ when

is the true parameter value for X and (82,83,...,9k’1)

Since we assume that the observations are independent,

Using (4.9)-(4.12) and (4.21), for j = 1,2,.,.,k

£ ;380

min (X - ¢/n

) <
lii:n Y

t1

otherwise
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0 if m@n (xti) < 60 + ¢/n
lf}gp

(.28) 1 £, 030.H,) :
-n 1 .
8, exp(- 3= iZl(xti-eo-c/n)) otherwise

"w =3

i

For t =1,2,...,k, let

(4.25) Y. = min (X_.)
t L& @n t1
and denote the ranked values of Yt by
4,26 Y <Y € oeas S Y
e, 0y <Y S Vg

Using (4.21)-(4.25), we obtain, for j = 1,2,...,k,

= -nk p & B _ c
91 exp[- - z E (xti-vo)]exp[- R (k-Z)]
n _ el t=] i=] K nol
(4.27) ‘n f(xi;el'“j) = if (Yj > 80 + ¢/n) ‘ﬂ (Yi > 00 - ¢/n)
i=1 i=l
#)
0 other..ise
If we denote, for j = 1,2,...,k,
n —
4,25 b.(n) = b, T £(N.,8,1)
( ) )(1) e ( i

then tie Baves decision ruale may be rewrittin as f{ollows:




For ¢ =1,2,...,k, select 1

, 38 best population if

(4.29) bl(n) > b.(n) J AR
- 3 = 1B 5K

From (4.27), we note that for any given set of observations, the
joint density function under each Hj is the same, whenever the joint
density function is positive under each Hj' For certain sets of observa-
tions, the joint density function is equal to zero under each Hj (such
cases represent regions of probability zero and may be ignored from
consideration in constructing Bayes decision rules). For the remaining
sets of possible observations, the joint density function may be :ero
under some hypotheses and equal to the same positive value under the
remaining hypotheses (as is clear from (4.27)).

Since we are interested in an optimal (minimax) decision rule for
the artificial sequence of problems, we need not rewrite (4.29) to
develop simplified expressions for a Bayes decision rule for any general
apriori distribution. We note, by the inherent symmetry in the problem
that a minimax decision rule will be given by the Bayes decision rule
with the prior given by

(4.30) b, = )2 1,2,0.4,k

[
ol Kd

For this prior, the Bayes decision rule, which is a minimax decision

rule too, is not unique because of ties in the bj(n) (as defined by

L___._—____._,. i i e o= e eigws o egme g
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(4.28)). A minimax decision rule is given by the following:

Select n, as the best population if

(4.31) Y 2 W, J ,2,...,k

L)
o
9

For the minimax decision rule given by (4,31), one is interested
in computing the probability of correct selection. This will be needed
in showing that the decision rule for the real problem is asymptotically
minimax,

Note that if Xti (i =1,2,...,n) have a distribution given by

(4.9), then

P{nYt <yl P{ min X_. < y/n}

l1<i<n CI

= 1 - P{ min Xti > y/n}

l<i<n

n
z ] - il (e' ()’/n - Wt)/st)
i=1
or,
-y/S, m./S

l -e e &

(4.32) P{nY, <y}

From the above, it follows that

-y/s

(4.33) Pngy, < v) <y} = 1-e °
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Thus from (4.12), (4.13) and (4.31) and denoting the common known

St by 8,, we obtain
P(CS) = P(Yl < Y(k) i =1,2,000,k)
where Y(k) 1s the observation from the population with largest y.

Rearranging, we obtatn

PCS) = P(n(Yl - (8 - ¢/n) < n(Y(k) - (8 ¢ ;) o e N = V2gedd.k
. P(Zi < Z(k) ¢ 2¢ all i)
where the distribution of Zi is given by (4,33).
Thus,
ze2¢, ¥}
. -(_ ) _z/a
6 )| 1
P(CS) = [[1-e °1 —e dz
0 8
1
S kel
= [ |l-e¢ f1 &t et dt
0
Denoting e = by u,
i k-1
(4.34) P(CS) = [ (1 - 2*u) " du

0
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where,

(4.35) ¢ = e "1

Evaluating the right hand side of (4.34), one can determine the

P(CS) achieved for the optimal procedure for any given sample size n.

Asymptotically Optimal Procedure for the Real Problem

The above sequence of problems was artificial because we assumed

8, vas known, We now develop an asymptotically optimal procedure for

the real problem, where nothing is known about the value of 6y
Since the minimax procedure for the artificial problem did not

use the inforiation about 8 it follows immediately that an asymptotically

l)

optimal j cuure for the problem is given by the following theorem.
Theoren 4,1 An asymptotically minimax procedure for selecting the best

population is given by the following:

Select Il as best population if

Y > v, £, = 1,2,...,k
J £ L

where Yl is as defined by (4.25).

Proof: The decision variables have the samec asymptotic distribution as

the decision variables of the minimax (and Bayes) decision rule for thc
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the artificial problem, Thus the above procedure has the same asymptotic

Bayes risk and is hence an asymptotically minimax decision rule.

Q.E.D.

It is interesting to note here that unlike the regular case, where
local Bayes rules were used to construct an asymptoticelly optimal proce-
dure, in the non-regular case being considered use of a simple Bayes rule
for the artificial problem (wlhcre the nuisance pa:iameter is known with
certainty) cuables one to conctruct an asymptotically optimal ranking

procedure.

Preliminary Sequcnce of Artifi-ial Problems: L_ is the Nuisance Parameter

We first solvz a sequence of artificial problems one for each n),
before procecding to the real problem for case (ii) (i ., (4.15) - (4.18)
hold).

Suppose it is known that o, - 5!

one of the k hy,otnesc: given by (4.18), 51 is a known constant and

0 <c <L, ¥ewish to test which one of the k hypothcses, given by

and (92’93""'°k+1) satisfy

(4.18), is the true hypothesis; and the loss function is of the zero-one
type, given by (4.14).

ror tie above problem, we construct a Bayes decision rule relative
to the following apriori distiivbution:

For j =1,2,...,k, bj i1s the apriori probability that “j is the

k
true hypothesis, wiiere for j = 1,2,...,k, bj >0 and Z b. = 1,

j=1 )
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It can be seen that for the above problem, a Bayes decision rule
relative to the above prior, reduces to the following:
For ¢ =1,2,...,k select HR as the true hypothesis (equivalently

m, as best population) if

b.
(4.36) J el 2 gL 5= L2000k
2 )
where, for ¢,j = 1,2,...,k
n o
121 £(X;:0),H))
(4.37) Jali) = =
n £(X.;e,,H.)
sl

Here f(Xi; I’Hj) denotes the joint pdf of (xli’XZi""'xki) when
(61'62""’ek+l) is the true parameter point and (8,,65,0.4,8,,,)
satisfy Hi' as given by (4.18).

From (4.9), it follows that

" 7
k-1 2 —
(4.38) ( (8g*c/ /M) (8,=c//n) exp| - (8g+c//m) 121 (x;;-8))
n E g -
p— i - (0,-c/¥n) (X .-6,)
iflf(xi'el'”i) < 0 e
if Yo -6-1
~ 0 otherwise
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where,
(4.39) Y = min {X4?
lipik
l<i<n
From (4.38), we get
(4.40) J (&]j) = 0 if Y<;—
n 0 -1

which occurs with probability zero and can be ignored;and

(4.41) Jn(llj) = exp{Zc(Zj-ZQ)} otherwise

where, for ¢ =1,2,...,k,

n

(4.42) 2, = izl (Xg; - 61)//5

Thus the Bayes decision rule reduces to the following:

4 For ¢ =1,2,..,,k select n, as the best population if
Ly
(4.43) z! <_ Zj O R log bl J : Rl',zpoou'k

In order to develop a minimax procedure for the problem, due to the

inherent symmetry in the problem, the prior (bj 2 % j = 1.2,...,k} gives

a minimax decision rule, Thus, a minimax decision rule for the artificial
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problem, is given by the following:

Select n, as the best population if

(4.44) Z i Z. 2, ,Z,ooo,k

o de
KB
LT ol

The minimax decision rule is completely specified by (4.44); but we
need to study the asymptotic behavior of the decision variables in order
to develop an asymptotically optimal procedure for the real problem,

For 2 = 1,2,...,n and when &, is the common location parameter,

1
we have
(4.46) Var X = § J
* Li 2
and by a central limit theorem,
n -
1o -8
1=1 - s
(4.47) lim P(/n T A
n+o 2
L Yy 1 2%/ J
= dz
-= /21

Thus (4,47) could be used for the asymptotic distribution of the

decision variables,
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Optimal Procedure for the Real Problem

The above sequence of problems was artificial because we assumed

that 51 was known, We now develop asymptotically optimal procedure

for the problem, where nothing is known about 8,

Let el(n) a consistent estimator of 61 be defined as

(4.48) él(n) min {X_.}

1<tk O
liﬁﬁp
where él(n) satisfies
(4.49) P {nlél(n) - 8,0 <D(e)} > 1 -
0

1
{H is true}

where {H 1is true} implies one of the p hypotheses given by (4,18) are
true,
For 2 =1,2,...,k, let
n

(4.50) ey = (] gy

l -~
— - 8.(n))}
R~ B 1

Then, an asymptotically optimal decision rule is given by the following

theorem,

Theorem 4,2 An asymptotically optimal decision rule for the problem of
selecting the best population (largest scale parameter) is given by:

For ¢,j =1,2,...,k, select !l2 as the best population if
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(4.51) Zn < zj J £
Proof: It is easy to see that
= . ;b n
4,52 Z =L, = 2 -1, = =— X . - b
@-52) Lo Lo /E(le o izl i1

Thus the decision variables given by (4.51) have the same asymptotic
distribution as the minimax (and Bayes) decision rule for the artificial
problem. Thus the decision rule given by (4.51) is an asymptotically
minimax decision rule for the problem.

Q.E.D.

It may be noted that we could easily have defined 22 by

~

X’;i . However the above definition (i.e., Zl given by (4.50))

e
iHe-~-13

i=1
was intentional since it allows us to observe what the optimal decision
rule would look like when the populations have different unknown location

parameters as the nuisance parameters for the problem., In such a situation,

if we let, for t =1,2,...,k

(4.53) L. = min X_.
. li;:p =
and
(4.54) Z. = — (X3 - Exd)
t /;\. is1 t1 t
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then an asymptotically optimal procedure is given by Theorem 4,2 with
2t as defined by (4.54) (instead of (4.50)). We again note ir this
case that by using a simple Bayes rule one is able to construct an

asymptotically optimal ranking procedure,

Optimal Procedures for Other Ranking Goals

In Chapter 3, we considered two general ranking goals which have
been considered in the literature, and developed asymptotically optimal
procedures for situations in which certain regularity conditions hold.
We now develop an optimal procedure for the two general ranking goals
considered in Chapter 3, for the case of the non-regular exponential
density functions,

Instead of repeating the detailed analysis of Chapter 3, we will
state the optimal ranking procedures for each goal in terms of the

following theorems (using the notation defined earlier in the chapter).

Case (i) L_ is the rcnking parameter; S is the common unknown nuisance

t _ t
Qar:;:ter

Asymptotically optimal procedures for Goal I and Goal II are given

by the following theorem:

Theorem 4,3 (i) An asymptotically optimal procedure for Goal I, (to
select s populations to contain at least d of the t best populations)

is to select the s populations associated with Y[k]’Y[k-l]""’Y[k-svl]'
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(ii) An asymptotically optimal procedure for Goal Il (selecting
t best ordered populations, 1<t < k) is to select the t populations

‘ i o b
associated with Y[k]'y[k-l]" ’Y[k-t+1] as the best, the second best,

th

etc,, the t best population respectively,

Case (ii) l/St is the ranking parameter; Lt is the common unknown

nuisance parameter

Asymptotically optimal procedures for Goal I and Goal II are given

by the following theorem:

Theorem 4.4 (i) An asymptotically optimal procedure for Goal I is
to select populations associated with 2[k]’2[k-1]""’2[k-s+1] as the

best set of populations.

(ii) An asymptotically optimal procedure for Goal II is to select

populations associated with Z[k]’i[k-ll""’z[k-t+1] as the best, the

second best, etc., the tth best populations, respectively,

In this case 2( is as defined by (4.50) and the ordered values

are denoted by

A

(4.55) Z[l] < 2[2] € sees € Z[k]

One may note here that Theorem 4.4 could be generalized to the case

of different (unknown) location parameters Lt (by replacing 22 as

defined by (4.50), by 22 as defined by (4.54)).
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4.4 Asymptotically Optimal Procedure for Ranking Non-Regular Uniform
Distributions

We now develop asymptotically optimal procedure for a non-regular

uniform distribution,

Let X ., i=1,2,...,n denote n independent observations from
t1
Me» t =1,2,,..,k, each with pdf ft(~|-) given as
1 if 8,, < x <8
62t-91t 1t — 7 - "2t
4 =
(4.56) ft(xle) f("|91t'92t)
0 otherwise
where elt’ezt denote the two unknown parameters characterizing population
nt.
Two cases of interest arise here:
(1) 62t is the parameter being ranked; 61t is the nuisance
parameter,
(ii) elt is the parameter being ranked; 62t is the nuisance
parameter,

The two cases are in a sense very similar and a solution to one
would suggest a solution to the other, It may also be noted that the
analysis for each of the two cases of interest is very similar to the
analysis in Section 4.3 for ranking location parameters (Lt) of
non-regular exponential populations, when St is the nuisance parameter.
To avoid repetition, we omit the detailed analysis and the asymptotically
optimal procedures are given in terms of the following theorems, which

we state without proof,
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We first define notation to be used in the statement of the theorems.

For t =1,2,...,k, let

(4.57) U = mn (X,.)

t lﬁfiﬁ t1

(4.58) V, = max (X..)
1<i<n

and let the ranked values of U, and Vt be denoted by

(4.59) U[l] < U[Z] ¢ Gaes < U[k]
and
(4.60) Y < V

[1] [2] ¢ EEes €¥q

An asymptotically optima. procedure for selecting the best popula-

tion is given by the following theorem,

Theorem 4,5 (i) An asymptotically optimal procedure for selecting the
population associated with the largest 92r is to select the population

associated with V[k].

(ii} An asymptotically optimal procedure to select the population

associated with the largest 6 is to select the population associated

1t

with U[k]‘
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For the two general goals considered in Chapter 3 (Goal I and Goal
I1), asymptotically optimal procedures for the problem at hand are as

given by the following theorems:

Case (i) 6,¢ is the ranking parameter

Theorem 4,6 (i) An asymptotically optimal procedure for Goal I (to
select s populations to contain d of the t best populations) is

to select the s populations associated with v[k-s+1]‘v[k-s]”"'V[k]'

(ii) An asymptotically ~ptimal procedure for Goal II (selecting
t best ordered populations, 1 < t < k) is to select the populations

associated with V as the best, second best,...,

DRMUS IR PRBY
tth best population respectively,

Case (ii) elt is the ranking parameter

Theorem 4,7 (i) An asymptotically optimal procedure for Goal I is to
select s populations associated with U[k]’”[k-l)""'U[k-s+l] as the
best set of populations,

(ii) An asymptotically optimal procedure for Goal II is to select
the populations associated with U[k]’u[k-l]""’u(k-t+l] as the best,

second best,...,tth best population respectively.

Since the purpose of this chapter was only to indicate how the method

used for developing asymptotically optimal procedures for regular cases
could be used for the non-regular cases as well, we do not indicate the

optimal procesures for the Laplace and Weibull distributions (the two
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remaining non-regular density functions listed in Section 4.1). The
method used in Sections 4.3 and 4.4 would be used for these cases too

and the analysis is very similar to the one outlined in Section 4.3,




(1]

(2]

(3

(4]

(s]

(6]

[7)

(8]

(9]

(10]

(11]

N £ i i RS e oo

BI BLIOGRAPHY

Bahadur, R, R, and Goodman, L, '"Impartial decision rules and
sufficient statistics,”" Annals of Mathematical Statistics,
Vol, 23 (1952), pp. 553-562.

Barr, D, R, and Rizvi, M, H. ‘Ranking and selection problems of
uniform distributions," Trabajos Estadist, Vol, 17 (1966),
pp. 15-31.

Bartoo, J, B, and Puri, P,S. "On optimal asymptotic tes¢s of
composite hypotheses,' Annals of Mathematical Statistics,
Vol, 38 (1967), pp. 1845-1852,

Bechhofer, R, E, "A single-sample multiple decision procedure
for ranking means of normal populations with known variances,'
Annals of Mathematical Statistics, Vol. 25 (1954), pp. 16-39,

Bechhofer, R, E., Dunnett, C, W. and Sobel, M. "A two-sample multiple
decision procedure for ranking means of normal populations with
a common unknown variance,' Biometrika, Vol., 41 (1954), pp. 170-176.

Bechhofer, R, E.,, Elmaghraby, S. and Morse, N. "A single sample
multiple-decision procedurc for selecting the multinomial event
which has the highest probability," Anruz2ls of Matheratical
Statistics, Vol. 30 (1959), pp. 102-119.

Bechhofer, R. E., Kiefer, J. and Sobel, M, Sequential Identification

and Ranking Procedures, Statistical Research Monographs, Vol. 3,
The University of Chicago Press, (1968).

Bechhofer, R, E. and Sobel, M., "A single-sample multiple-decision
procedure for ranking variances of normal populations,' Annals
of Mathematical Statistics, Vol. 25 (1954), pp. 273-289,

Bechhofer, R, E. and Sobel, M, 'Non-Parametric multiple decision
procedures for selecting that one of k populations which has
the highest probability of yielding the largest observations
(Preliminary Report), Annals of Mcthematical Statistics, Vol. 29
(1958), p. 325.

Berry, A, C. '"The accuracy of the Gaussian approximation to the sum
of independent variates," Trans. American Mathematical Society,
Vol. 49 (1941), pp. 122-136.

Buhler, W. J. and Puri, P.S. '"On optimal asymptotic tests of
composite hypotheses with several constraints," Zeitschriftfuer
Wahrscheinlichkeitstheorie, Vol. 5 (1966), pp. 71-88,

-128-




-129-
{12] Chambers, M. L. and Jarratt, P. '"Use of double sampling for select-
ing best populations,"” Biometrika, Vol. 51 (1964), pp. 49-64.

[13] Cramer, H. Mathematical Methods of Statistics, Princeton University
Press, Princetnn (1966).

(14) Desu, M, M. and Sobel, M. '"A fixed subset-size approach to the
selection problem," Biometrika, Vol, S5 (1968), pp. 401-410,

[15) Dudewicz, E, J. "The efficiency of a nonparametric selection proce-
dure: largest location parameter case," Technical Report No. 14,
Department of Operations Research, Cornell University, Ithaca,
N.Y. (1966).

(16) Dunnett, C. W, "On selecting the largest of k normal population
means," Journal of Royal Statistic Soc,, B, Vol. 22 (1960),
pp. 1-40.

[17] Eaton, M, L. '"Some optimum properties of ranking procedures,' Annals
of Mathematical Statistics, Vol. 38 (1967), pp. 124-137,

(18] Esseen, C, G. '"A moment inequality with an application to the
Central Limit Theorem," Skand. Aktuarietidskr., Vol., 39 (1956),
pp. 160-170,

(19] Fabian, V., '"On multiple decision methods for ranking population
means," Annals of Mathematical Statistics, Vol, 33 (1962),
ppo 248'254.

[20] Gupta, S. S. "On a decision rule for a problem in ranking means,"
Mimeo, Series No. 150, Inst., of Stat., Univ. of North Carolina,
Chapel Hill, North Carolina (1956).

[21]) Gupta, S. S, '"Probability integrals of multivariate normal and
multivariate t," Annals of Mathematical Statistics, Vol, 34
(1963). ppo 792-8280

[22] Guttman, I, ''Best populations and tolerance regions," Annals of
Inst, of Statistical Mathematics (Tokyo), Vol. 13 (1961), pp. 9-26.

[23] Guttman, I, and Milton, R, C. '"Procedures for a best population |
problem when the criterion of bestness involves a fixed tolerance
region," Annals of Inst, of Statistical Mathematics (Tokyo) ,
Vol, 21 (1969), pp. 149-161,

{24]) Guttman, I. and Tiao, G. C, 'A Bayesian approach to some best popula-
tion problems," Annals of Mathematical Statistics, Vol, 35

(1964), pp. 825-835,




(25]

[26]

(27]

(28]

| 29]

[30]

(31]

(32]

(33]

[34]

[35]

i36]

[37)

-130-

Hall, W. J. '"The most economical character of scme Bechhofer and
Sobel decision rules,” Annals of Mathematical Statistics,
Vol, 30 (1959), pp. 964-3569,

Hoel, D, G. and Mazumdar, M. '"An extension of Paulson's selection
procedure," Annals of Mathematical Statistics, Vol, 39 (1968),
pp . 2067" 2074 .

Hogg, R. V. and Craig, A. T. "Sufficient statistics in elementary
distribution theory," Sankhya, The Indian Journal of Statistics,
Vol. 17 (1956), pp. 209-216,

Katz, M. L. "Note on the Berry-Esseen Theorem," Annals of Mathe-
matical Statistics, Vol. 34 (1963), pp. 1107-1108.

LeCam, L. 'On the asymptotic theory of estimation and testing
hypothesis,” Proceedings of the Third Berkeley Symposium on
Mathematical Statistics and Probability, Vol. 1, pp. 129-150.
Univ. of California Press, Berkeley and Los Angeles (1956).

Lehmann, E. L. Testing Statistical Hypotheses, Wiley, New York L
(1959).

Lehmann, E. L. 'On a theorem of Bahadur and Goodman,' Annals of
Mathematical Statistics, Vol. 37 (1966), pp. 1-6.

Mahamunulu, D. M. "On a generalized goal in fixed-sample ranking
and selection problems," Technical Report No. 72, Dept. of
Statistics, Univ. of Minnesota, Minneapolis, Minn. (1966).

Mahamunulu, D, M, 'Some fixed-sample ranking and selection problems,"
Annals of Mathematical Statistics, Vol. 38 (1967), pp. 1079-1091.

Milton, R. C. "Tables of the equicorrelated multivariate normal
probability integrals," Technical Report No., 27, Dept, of
Statistics, Univ, of Minnesota, Minneapolis, Minn., (1963).

Neyman, J. '"Optimal tests of composite statistical hypotheses,"
pp. 213-234; in the Harald Cramer Volume, ed. by Grenander, U.,
Almquist and Wiksell, Stockholm (1859).

Paulson, E. "A sequential procedure for selecting the population
with the largest mean from k normal populations," Annals of
Mathematical Statistics, Vol. 35 (1964), pp. 174-180,

Paulson, E. '"Sequential procedures for selecting the best one of
several binomial populations," Annals o. Mathematical Statistics,
Vol, 38 (1967), pp. 117-123,

e e e Ameng E TS 3 _saows o 8 Sy wen ieme o pTo eI ioeiigotognpem oo :‘




[38]

(39]

(40]

(41]

(42]

(43]

(44]

[45]

[46]

[47]

(48]
[49]

(50]

(51]

-131-

Perng, S. K. "A comparison of the asymptotic sample size of two
sequential procedures," Annals of Mathematical Statistics,
Vol, 40 (1969), pp. 2198-2202,

Ramberg, J. S. "A multiple decision approach to the selection of
the best set of predictor variables,' Technical Report No. 79,
Dept., of Operations Research, Cornell Univ,, Ithaca, N.Y. (1969).

Rao, C, F, Linear Statistical Inference and its Applications,
Wiley, New York (1967),

Robbins, H., Sobel, M, and Starr, N. '"A sequential procedure for
selecting the largest of k means," Annals of Mathematical Statistics

Vol. 39 (1968), pp. 88-92,

Sazanov, V., V, '"On the multidimensional central limit theorem,"
Sankhya, The Indian Journal of Statistics, Series A, Vol, 30,
(1968), pp. 181-204,

Sobel, M, '"Sequential procedures for selecting the best exponential
population," pp. 99-110 in Proceedings of Third Berkeley
Symposium on Math, Stat, and Probability, Vol. 5, Univ, of Calif,
Press, Berkeley, Calif, (1956).

Sobel, M, and Huyett, M, "Selecting the best one of several binomial
populations,' Bell System Tech, Journal, Vol. 36 (1957), pp. 537-
576.

Sommerville, P, N. "Some problems of optimum sampling,'" Biometrika,
Vol. 41 (1954), pp. 420-429,

Srivastava, M, S, '"Some asymptotically efficient sequential procedures
for ranking and slippage problems,'" Journal of Royal Statistjcal
Soc., Series B, Vol, 28 (1966), pp. 370-380,

Srivastava, M.S, and Oglivie, J. '"The performance of some sequential
procedures for a ranking problem," Annals of Mathematical Statistics,
Vol. 39 (1968), pp. 1040-1047,

Wald, A, Statistical Decision Functions, Wiley, New York (1950).

Weiss, L., Statistical Decision Theory, McGraw Hill, N.Y., (1961).

Weiss, L. "On the estimation of scale parameters,' Naval Research
Logistics Quarterly, Vol, 8 (1961), pp. 245-256.

Weiss, L. and Wolfowitz, J, '"Generalized maximum likelihood estima-
tors," Theory of Probability and its Applications, Vol., 11 (1966),
Pp. 181-204,




(52}

(53]

(54]

(55]

(56]

-132-

Weiss, L. and Wolfowitz, J., 'Maximum Probability Estimators,"
Annals of Inst, of Stat, Math (Tokyo), Vol. 19 (1967), pp.
m" 206.

Weiss, L. and Wolfowitz, J, '"Maximum Probability Estimators with
a General Loss Function,' to appear in Proceedings of the
International Syuposium on Probability and Information Theory,
held at McMaster University, Hamilton, Ontario, April 4 and
S, 1968,

Weiss, L. and Wolfowitz, J, '"Maximum Probability Estimators and
Asymptotic Sufficiency," submitted to Annals of Inst. of
Stat. Math, (Tokyo).

Weiss, L. and Wolfowitz, J. "Asymptotically minimax tests of

composite hypotheses,' Zeitschriftfuer Wahrscheinlichkeitstheorie

Vol, 14 (196%), pp. 161-168,

Zolotarev, V, M., '"An absolute estimate of the remainder term in
the central limit theorem," Theory of Probability and its
Applications, Vol, 11 (1966), pp. 95-105,

L e v S A P T T T Sasm ey s o s




UNCLASSIEIED

Secunty Classification

DOCUMENT CONTROL DATA-R&D

Security classilication of title, hody of abatrsct and indexing annata‘ion munt be entered when the overall report ix claratliod)
Y ORIGINATING ACTiIvITY (Comporate author) 8. REFOMYT SECURITY CLASSIFIC ATION
Department of Operations Research Unclassified
College of Engineering, Cornell University ol
Ithaca, New York 14850

¥ RFPORT TITLE

Asymptotically Optimal Ranking and Selection Proced.res

4 UESCRIPYTIVE NOTES (Type of report and Inclusive dates)

Technical Report, March 1970

% AU THORS (Frest name, middie iniiial, last name)

Bawa, Vijay S.

¢ REPORT DATE 78. TOTAL NO OF PAGES 75. NO OF REFS

March 1970 132 56

88 CONTRACT OR GRANT NO 98. ORIGINATOR'S REPORT NUMBER(S)
DA-31-124-AR0-D-474

b. XRNXRNARX Technical Report No. 102
Nonr-401(53)

(o 9b. OTHER REPORT NOI(S) (Any other numbers that may be assigned

this report)
§SF GP-7798

17 DISTRIBUYTION STATEMENT

Distribution of this document is unlimited

't SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY

Sponsoring military activity Logistics and Mathematical Statistics
U. S. Army Research Office Branch, Office of Naval Research
Durham, N.C. 27706 Washington, D.C 20360

13 AASTRACT

Single-stage asymptotically optimal (minimax) procedures are developed for rank-
ing populations in the presence of nuisance parameters, when the populations are
ranked according to a parameter of the distribution and the so-called indifference-
zone approach to ranking and selection problems is employed. This is accomplished
by adapting methods used by Weiss and Wolfowitz (for 2-decision tests of composite
hypotheses problems in the presence of nuisance parameters) to multiple-decision
ranking and selection problems in the presence of nuisance parameters.

For the problem of selecting the 'best" population (and for certain other rank-
ing and selection goals), asymptotically optimal procedures are developed for situations
in which the joint density function of the observations satisfies certain mild
regularity conditions. In addition, the applicability of the basic method is
demonstrated by developing asymptotically cptimal procedures for ranking non-regular
exponential and uniform distributions, The asymptotically optimal character of
certain so-called natural selection procedures which already have been proposed in
the literature is proved. Single-stage asymptotically optimal procedures are derived
for certain problems for which heretofore no single-stage procedures had been
proposed,

FORM
DD e s ,1473 UnclaSSifie_gi

el L IRRRRL




Igm‘um\ Classification

ta

KT+ A MDY

LN

A

ROLE

asymptotically optimal procedures
decision theory

mathematical statistics

minimax procedures

nuisance parameters

ranking procedures

selection procedures

e e N et ‘

ed

N

Unclassifi

PRI ot




